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High grade gliomas are malignant brain tumors that arise in the central nervous system, in
patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation,
exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new
therapeutic strategies for these malignant brain tumors. Currently, immunotherapies
represent an appealing approach to treat malignant gliomas, as the pre-clinical data
has been encouraging. However, the translation of the discoveries from the bench to the
bedside has not been as successful as with other types of cancer, and no long-lasting
clinical benefits have been observed for glioma patients treated with immune-mediated
therapies so far. This review aims to discuss our current knowledge about gliomas, their
molecular particularities and the impact on the tumor immune microenvironment. Also, we
discuss several murine models used to study these therapies pre-clinically and how the
model selection can impact the outcomes of the approaches to be tested. Finally, we
present different immunotherapy strategies being employed in clinical trials for glioma and
the newest developments intended to harness the immune system against these
incurable brain tumors.

Keywords: glioma, immune microenviroment, immunotherapy, mouse model, clinical trial
Abbreviations: CNS, Central nervous system; GBM, Glioblastoma; HGG, High grade glioma; ICI, Immune checkpoint
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Oncolytic Viruses; PFS, Progression Free Survival; PBMCs, peripheral blood mononuclear cells; SOC, Standard of care; TAA,
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INTRODUCTION

Malignant tumors of the central nervous system (CNS) have an
annual rate mortality of 9.01 per 100,000 adults in the US (1).
Gliomas are brain tumors which clinically can present as grades
II–IV in relation to their malignancy. Glioblastoma, the most
aggressive type of glioma (high-grade glioma, WHO grade IV),
accounts for the majority of gliomas and the highest incidence
rate for malignant tumors of the CNS in adults (3.21 per 100,000
population) (1). This type of aggressive tumor has been subjected
to extensive research due to the dismal outcomes of the current
standard of care (SOC) therapies (maximal safe surgery, followed
by radiation and chemotherapy with Temozolomide), and the
lack of improvement in the median survival post-diagnosis (14-
17 months) (2).

There are several aspects of this type of tumor that makes it
difficult to treat (3), such as its anatomical location and the
presence of a blood-brain barrier, which hampers the delivery of
therapeutics (4); its intrinsic infiltrative nature, that makes it a
tumor virtually impossible to resect completely (3, 5); and the
presence of an immunosuppressive micro-environment, that
impedes the natural development of an anti-tumor immune
response (6–11). In spite of these challenges, in the last decade,
there has been an expansion in the therapies aimed to harness the
immune system to direct it against malignant glioma (12). So far,
pre-clinical data has demonstrated the effectiveness of immune-
stimulatory or anti-immunosuppressive strategies, and many
clinical trials are currently ongoing to test their efficacy in the
clinical arena (12).

This review aims to discuss several aspects related to the
glioma immune-microenvironment and the newest strategies
that could emerge as a result of the latest pre-clinical
investigations. Firstly, we will present the available clinical data
regarding the immune microenvironment in glioma and its
particularities in terms of tumor classification and molecular
features (7, 13–15), as well as the current immune-mediated
strategies being tested in the pre-clinical field (16). Also, we will
overview the present immune-stimulatory therapeutic modalities
being tested in clinical trials (8, 17). Finally, we will discuss the
latest pre-clinical developments related to anti-glioma therapies
that could enhance the immune system to develop long-lasting
anti-tumor immunity (18–24).

We believe that this review will bring to light the latest
improvements in the strategies being developed to treat high-
grade gliomas aimed to stimulate an anti-tumor immune
response, broadening the spectrum of possibilities to be tested
in the clinical setting and bringing new concepts for fighting this
devastating tumor.
GLIOMA CLASSIFICATION

Adult Gliomas
Glioma involves a heterogeneous group of primary brain tumors
originated from neural precursor cells (25), and represent thirty
percent of the CNS tumors (1, 26). They can be divided in diffuse
gliomas and non-diffuse gliomas, which refer to tumors with a
Frontiers in Oncology | www.frontiersin.org 2
circumscribed growth pattern, including ependymomas and
other astrocytic tumors (27, 28). The majority of adult gliomas
are diffuse, distinguished by an infiltrative pattern of growth
within the CNS parenchyma, and have been typically classified
according to histological features and grade of malignancy (27–
29). The histological analysis of surgical specimens allows the
identification different glioma subtypes: oligodendroglioma,
characterized by uniformly rounded nuclei; astrocytoma, with
nuc l e a r i r r e gu l a r i t i e s and hype r ch romas i a ; and
oligoastrocytoma, which is a rare mixed glioma (30).
Additionally, based on the grade of anaplasia it is possible to
further divide gliomas into four World Health Organization
(WHO) subtypes, ranging from WHO grade I to WHO grade
IV. WHO grade I gliomas correspond to tumors with slow
development and better prognosis; WHO grade II gliomas are
defined as low grade gliomas; WHO grade III gliomas are used to
describe anaplastic gliomas; and WHO grade IV encompass
glioblastoma (27, 28, 31). Usually, high grade gliomas (HGG)
include WHO III and IV gliomas.

The revised 2016 WHO CNS classification includes, for the
first time, distinctive genetic/epigenetic alterations to define
several groups of gliomas (28, 32). The presence and
distribution of genetic alterations in brain tumors, such as
alterations in PI3K, PDGFR, PTEN, TP53, IDH, EGFR, H3F3A,
ATRX and TERT (33–35), are now a criteria used to differentiate
glioma subtypes (28, 36, 37). Each molecular glioma subtype is
related to a histologic tumor-class and a particular WHO grade
of malignancy (33, 34, 38–40). The hallmark genetic alteration in
adult diffuse gliomas, that promoted the incorporation of
molecular features in their classification, is the mutation in
isocitrate dehydrogenase 1 (IDH1). This alteration, usually at
arginine 132 (IDH1-R132H), is highly frequent in diffuse low-
grade gliomas (LGGs; WHO grade II), in anaplastic
astrocytomas (WHO grade III), and also in a smaller
proportion of HGG originated from LGGs (secondary
glioblastomas; WHO grade IV) (28, 40–42). IDH1-R132H
(mIDH1) catalyzes the production of 2-hrydroxyglutarate,
eliciting epigenetic reprogramming of gene expression (33, 40,
43, 44) and is associated with better prognosis in glioma patients
(33, 39, 40, 45). In addition, the loss of 1p/19q chromosomal
segments define mIDH1-1p/19q-codel and mIDH1-noncodel
glioma subtypes. Mutant IDH1-noncodel typically co-occurs
with loss-of-function mutations in ATRX and TP53 genes,
which are associated with astrocytoma and oligoastrocytoma
subtypes (28). Mutant IDH1 1p/19q-codel gliomas are usually
oligodendrogliomas and frequently co-express mutations in
TERT promoter (TERTp) and CIC (28, 39–41). In adults,
diffuse wild type (wt) IDH1 gliomas appear principally in
patients over 50 years old and commonly are HGG, WHO
grade IV of malignancy (28, 31, 39). These HGG generally
harbor mutations in TP53 and TERTp, with retention of
ATRX function. They can also present alterations in the
chromosomes 7 and 10, deletions in CDKN2A/B, and changes
in genes involved in the RTK-RAS-PI3K signaling cascade, such
as PTENmutation or loss or EGFR amplification (28, 31, 32, 34).
Importantly, the DNA methylation, which typically occurs at
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cytosines followed by a guanine separated by a phosphate group
(CpG site), emerges as a distinctive parameter to refine tumor
classification with clinical implications, especially in cases with
ambiguous histology. The CpG-island methylator phenotype (G-
CIMP) is closely related with IDH1 mutation and is associated
with better prognosis in gliomas (46, 47). On the other hand,
demethylation in CXCR4, TBX18, SP5, and TMEM22, genes
have been linked with initiation and progression of glioblastoma
(48). DNA methylation profiling has been shown to be highly
robust and reproducible. In diffuse glioma TCGA patients,
Ceccarelli et al., identified glioma DNA methylation clusters
(LGm1–LGm6) linked to different molecular glioma subtypes
(40). More recently, Capper et al, developed a DNAmethylation-
based classification system, which allowed to define five
categories of methylation classes of CNS tumors, which
resulted in a change of diagnosis in up to 12% of prospective
cases analyzed (49); and in the positioning of this method as a
powerful tool to improve glioma classification. In addition, the
analysis of DNA methylation profiles has utility in therapeutic
decisions. The presence of methylated CpG islands in the O6-
methylguanine-DNA methyltransferase (MGMT) promoter is a
molecular marker of better response to DNA alkylating agents
(50), indicating that the methylation status of MGMT promoter
is a critical feature to design glioma treatment.

In summary, adult gliomas are classified by histological
features and by molecular lesions, that define distinctive tumor
entities, which are associated with different grades of malignancy.
This classification is relevant for diagnosis, prognosis and clinical
decisions. In addition, the updated CNS-WHO classification for
brain tumors is a valuable source to improve and conduct
accurate studies of gliomas, considering the intrinsic biological
features of the different glioma subtypes.

Currently, the adult glioma SOC includes maximal safe
surgery when is possible; chemotherapy, generally with
temozolomide (TMZ); and focal radiation (17, 51). However,
in spite of intense investigation for years, no substantial clinical
improvements have been observed (51). This unfortunate fact
encourages the development novel therapeutic approaches for a
wide spectrum of glioma patients who are waiting for an
effective treatment.

Pediatric Gliomas
High grade gliomas comprise ~ 15% of all central nervous system
(CNS) pediatric tumors (52), and have an incidence of
approximately 0.85 per 100,000 children (26). Pediatric high
grade gliomas (pHGG) and diffuse intrinsic pontine gliomas
(DIPG) (recently included into the classification of Diffuse
midline glioma (DMG)) are highly aggressive gliomas, which,
unlike the adult counterparts, occur throughout the CNS
anatomy. The prognosis for pHGG is dismal, with an overall
median survival of 9-15 months and a 5-year survival rate of less
than 20% (53).

Brainstem gliomas are more prevalent in childhood, whereas
hemispheric pHGG, are more prevalent in adolescents (54). Several
characteristics distinguish pHGG from adult gliomas, such as
molecular (genetic and epigenetic), and clinical features (55).
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Particularly, advancements in molecular high-throughput
profiling over the last few years improved our understanding of
pHGG and led to the identification of unique genetic and epigenetic
features of these tumors. Most notably, the discovery of recurrent
mutations in the genes encoding histone variants H3.3 (H3F3A) and
H3.1 (HIST1H3B/C), and other genes associated with epigenetic
mechanisms, demonstrated the unique biology of pediatric brain
tumors (53, 56, 57). Three somatic mutations resulting in the
replacement of a lysine with a methionine at residue 27 of
histones H3.1 and H3.3 (K27M) in brainstem/midline pHGG, or
the replacement of a glycine to arginine or valine at residue 34
(G34R/V) of the histone H3.3 in hemispheric pHGG were found to
be characteristic of these tumors (53, 57). These mutations rewire
the epigenome, resulting in global hypomethylation and disrupt
critical regulatory sites of post-translational histone modifications
(56). These mutations are exclusive, are found at specific anatomical
locations, within distinct age groups and patients harboring these
tumors have different survival outcomes (38, 56).

The WHO classifies pHGGs as anaplastic astrocytoma (WHO
grade III) and glioblastoma (GBM; WHO grade IV) (28). Among
midline pHGG, the updated 2016 WHO classification of tumors of
the CNS classifies the DMG H3-K27M-mutant as an independent
entity, WHO grade IV (58). DMG H3 K27M-mutant arises in all
midline CNS structures, are astrocytic tumors, and represent the
majority of infiltrative brainstem glioma (59).

The histological characteristics of pHGG include
hypercellularity, nuclear atypia, abnormally high mitotic activity,
and increased angiogenesis and/or necrosis, the latter two associated
primarily with GBM morphology (60). Due to their proliferative
nature, HGG have shorter duration between symptom onset and
diagnosis compared to tumors of lower grade, precluding the
clinical advantages of early detection (61, 62). Surgical
intervention of non-brainstem pHGG patients includes tumor
resection and biopsy, although total tumor resection is often
impossible in pHGG, particularly for midline pHGG, as these
infiltrative tumors often progress into normal tissue beyond
surgical margins (58). However, the extent of resection is one of
the few significant prognostic markers for overall survival (OS) in
pediatric patients with pHGG (63). Although surgery is the primary
intervention for treatment of non-brainstem pHGGs, it is not
curative. Standard of care also includes radiation therapy for
pHGG patients above three years of age, typically 50-60 Gy
delivered over 3-6 weeks (61). Currently, no chemotherapeutic
treatments are involved in the SOC for pHGG; however, various
are being tested in clinical trials (64). Despite immense efforts, there
are no effective treatment options and pHGG has become the
leading cause of cancer related death in children and adolescents
under the age of 19 years (26, 60).

There is a diversity of molecular alterations driving pHGG
and therapies must be accordingly diverse and specific. Highly
targetable molecular alterations are found in different subtypes of
non-brainstem pHGG. For example, pHGG often carry genetic
alterations in the TP53, PTEN/PI3K/Akt, PDGF or Ras
pathways, which include targets that can be druggable (65).
However, immunotherapies specifically designed for pediatric
brain tumors have been understudied. Pre-clinical models for
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pHGG and the testing of immune-mediated therapeutic
approaches are starting to emerge (66, 67), which open new
avenues for the treatment of these aggressive pediatric
brain tumors.
GLIOMA IMMUNE MICROENVIRONMENT

Crosstalk Between the Healthy CNS and
the Immune System
The brain has for long been considered an immune privileged site
due to the absence of immune response after the heterotopic
transplantation of skin xenografts (68). However, in the same set
of experiments, Medawar et al. observed that if the immune system
had been previously exposed to the tissue graft in any other site of
the body and then the transplantation was done in the brain, a
powerful immune response invaded the CNS, causing grafting
breakdown and rejection (68). These data showed that the CNS
in not immune-isolated and that even though an immune response
against xenografts cannot be easily started in the brain parenchyma,
it can reach this site in a pre-immunized state.

Due to anatomical particularities, the crosstalk between the
CNS and the immune system differs from the immune response
mounted in any other organ of the body (69–72). For instance,
the passage of molecules and cells, such as immune cells, to the
brain parenchyma is subjected to a strict control by the
endothelial blood-brain barrier (BBB) (69). Also, the absence
of classic lymphatic drainage in the CNS was considered to be the
cause of the lack of an afferent arm of the immune system; i.e. the
route of antigen transportation from the site of infection/trauma
to the nearby lymphatic node (69). However, maintaining the
brain as an immune-isolated tissue would be dangerous, thus
many efforts had been destined to understand the mechanism by
which the immune system surveils the CNS. There are two types
of fluids in the CNS: the cerebrospinal fluid (CSF), in the
ventricles and the subarachnoid space; and the interstitial fluid
in the brain parenchyma. Even though both types of fluids drain
to the cervical and lumbar lymphatic nodes, they do it through
separate routes: while the CSF drains across the cribriform plate
and the dura mater lymphatics, the interstitial fluid drains via
perivascular channels into the lymph nodes or the CSF (69, 71).
This narrow space does not allow the passage of cells, but it
permits antigen transportation to the nearest lymph node, where
adaptive immune response could be started. In contrast, the
drainage pathways of the CSF allow cell trafficking and this fluid
has a more active crosstalk with the immune system (69, 73). In
fact, healthy individuals contain up to 700,000 cells in total in the
CSF (70). Around 80-90 % of these cells are T cells, majority of
which are memory T cells (70, 73). Also, a small proportion DCs
has been found in the CNS, and there is evidence that DC can
scan the CSF for foreign antigens and reach the lymphoid organs
to activate T cells in the periphery (70, 72).

Even though these data demonstrate the interconnection
between the immune system and the healthy CNS, this site
usually remains quiescent and immunosuppressed due to the
presence of factors derived from neural cells (70, 73). For
Frontiers in Oncology | www.frontiersin.org 4
instance, the brain parenchyma contains only one type of
immune cell: the microglia. These cells are tissue resident
macrophages, but they originate from a different embryonic layer
than circulating macrophages (73, 74). These cells are kept in an
inactivated state through the interaction of the CD200 receptor in
neural cells and CD200 ligand in microglia (75). Even though these
cells are capable of antigen presentation, the levels of MHC in
microglia and other astrocytes remains low (73). However, in
response to an infection, microglial cells become activated and
produce an array of pro-inflammatory mediators, to facilitate the
recruitment and activation of innate and adaptive immune cells
(76). After an inflammatory stimulus, the immune privilege of
the brain switches, increasing the permeability of the BBB and the
infiltration of myeloid cells and activated T cells, as well as the
proliferation of microglial cells (73, 76–78). This state causes
phenotypic changes as well, such as CD11c, MHCII and co-
stimulatory molecules’ upregulation (73, 78).

Immune Microenvironment in Brain
Tumors: General Concepts
The shift in the dogma of the CNS as an immune inert site,
prompted the development of immunotherapies against glioma.
Glioblastoma is one of the deadliest type of tumor and currently
patients succumb to this disease even after their treatment with
SOC (79). Thus, researchers have been devoted to find
therapeutic alternatives to harness the immune system and
direct it against this tumor. Today, there are several ongoing
clinical trials testing different type of immunotherapies, but the
results obtained so far have not been as encouraging as the effects
observed in pre-clinical models and the great majority have not
been tested in Phase III yet (12, 79).

There are several aspects related to the biology of gliomas that
make them difficult to treat by immunotherapies. For instance,
these tumors tend to have high intra-tumoral heterogeneity, so
that finding a tumor specific antigen as a target for immune
mediated therapies is difficult and usually approaches involving
tumor antigens require the inclusion of more than one target to
prevent antigen scape (80–82). Also, the intact BBB prevents the
readily penetration of chemotherapeutics to the brain
parenchyma, though its permeability can be affected in an
inflammatory state (83). Finally, the immune microenvironment
of these tumors tends to be immunosuppressive, hijacking the
efficacy of immune mediated strategies (6, 8, 9, 12, 78).

Glioma tumor immune microenvironment (TME), refers to
all those immune cells infiltrating the tumor mass. Even though
the diversity of cell infiltration can vary depending on the type of
brain tumor (revised below), glioma TME has usually been found
to be immunosuppressive (6, 7, 11, 84). Animal models as well as
the analysis of human samples have shed light on the
characteristics of glioma TME. Myeloid cells are the major
type of immune cell in glioma’s TME, with macrophages
representing more than 30% of the tumor mass (6, 85). This
group encompasses bone-marrow derived macrophages and
tissue-resident derived macrophages (13, 74). It is not clear if
these two populations have different functions in glioma or if
they are associated with tumor progression, but they have been
June 2021 | Volume 11 | Article 631037
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encountered at different locations: while microglial cells were
found at the tumor border, bone-marrow derived macrophages
were detected at the tumor core (86). These two types of cells are
generally known as tumor-associated macrophages (TAMs).
Also, infiltrating monocyte-derived macrophages constitute
85% of the total macrophage population in glioma and it has
been observed that prevention of monocyte infiltration extended
de median survival of tumor-bearing animals (86). There have
been detected expression markers and differential transcriptional
landscapes that can be used to distinguish these two populations
(86–88). For instance, resident microglia express P2Y12,
TMEM19, and are CD45 low, whereas macrophages express
CD44, CD169 and are CD45 high (87). More importantly, these
two cells’ subclasses have been identified in human samples, in
which intratumoral blood-derived macrophages displayed a
more immunosuppressive transcriptional program and their
presence correlated with tumor malignancy (86).

Myeloid-derived suppressor cells (MDSC) are a type of immature
myeloid cells that are known to have immunosuppressive functions
via differentmechanisms that ultimately inhibit T cell functions (9, 11,
13). These cells have been found in the blood of glioma patients and
in the tumor mass, and they have also been characterized in animal
models (9, 15, 89, 90). Usually, MDSCs are divided phenotypically in
monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs
(PMN-MDSCs). In humans, M-MDSCs are characterized by CD11b
+HLA-DR−CD14+CD15−CD33high, whereas PMN-MDSCs
express CD11b+CD66b+CD15+CD14−/dimCD33dimHLA-DR−
[PMCID: PMC6447515]. In mouse, MDSCs characterization entails
less markers: M-MDSC are defined as CD45+/CD11b+Ly6G-Ly6C+
and PMN-MDSCs as Cd45+/CD11b+Ly6G+Ly6C- (91). It has been
observed that the quantity and activation status of MDSC inversely
correlates with patient survival and that they can be a predictor of
WHO tumor grade (90). Moreover, whilst MDSC infiltration after
surgery has been associated with poor prognosis, MDSC decrease
correlated with better prognosis and an increase in DC
infiltration (90).

Lastly, tissue hypoxia, which is common in GBM due to the
inefficient neovascularization (10), induces regulatory T cells (Tregs)
activation and tumor-promoting phenotype of tumor associated
macrophages (10, 92). The presence of Tregs can suppress cytotoxic
T cell activities, leading to tumor progression. Moreover, tumor cells
as well as immunosuppressive tumor infiltrating immune cells,
secrete an array of cytokines that promote and maintain the
immunosuppressive microenvironment, not only affecting tumor
infiltration, but also cellular differentiation at the bone marrow level
(10, 84). Some of the cytokines encountered in the TME are IL-10,
TGFb and IL-6. These are related to NK and T-cell activities
inhibition and their expression is related to glioma progression (93).

Immune Infiltration Patterns in Brain
Tumors With Different Genetic
Landscapes: Lessons From The Clinic and
Animal Models
It is clear that immunosuppression is a common feature of
gliomas that enables tumor progression and malignancy.
However, the composition of the immune cell infiltrate varies
Frontiers in Oncology | www.frontiersin.org 5
among the type of tumor and certain immune cells are associated
with particular genetic alterations usually found in gliomas, such
as mutations in IDH1 (94).

The transcriptional landscape of GBM has been classified at
least in three different types: proneural, classical and
mesenchymal, which correlate with the presence of different
genetic alterations (95, 96). This classification not only describes
inter-tumor differences, but also intra-tumoral variability, as
samples taken from distinct regions and at different times
thought-out treatment showed diverse transcriptional
signatures. With the emergence of Single cell RNA-Seq
(scRNA-Seq), the cellular composition of glioblastoma was
found to be even more complex. It has been observed that
tumor cells can exist in four different phenotypes:
mesenchymal-like, astrocyte-like, oligodendrocytic precursor
cell-like and neural progenitor cell-like (80). These different
cellular states are correlated with different genetic mutations
and with the transcriptional signatures defined previously, with
neural progenitor cell-like and oligodendrocytic precursor cell-
like cells associated with the proneural subtype; mesenchymal-
like cells with mesenchymal subtype; and mesenchymal subtype
and astrocyte-like cells associated with classical subtype (80).
This complexity in the phenotype of gliomas has been found to
have a correlation with the composition of immune cell
infiltrate (7).

Tumor microenvironment composition in adult glioma has
been lately characterized. Luoto et al. performed a regression-
based gene expression deconvolution to estimate the proportions
of particular immune cell types based on RNA-Seq analysis of
156 primary GBM samples generated by The Cancer Genome
Atlas (97). They found that cases could be grouped into three
immune-response groups which were the following: negative,
humoral and cellular-like. They also found that differences in
adaptive immune response could be associated with the specific
subtypes of HGG defined above. They describe that the
“negative” subgroup, which is associated with the negative
regulation of lymphocyte response, encompass the proneural
subtype, including those samples with CDK4-MARCH9 locus
amplification and IDH1 mutation. The mesenchymal subtype
was more prevalent in the “humoral” subgroup, in which gene
signature was related to B-cell and humoral response
components. Finally, the “cellular-like” subgroup was more
populated with classical subtype samples, as well as with
samples with EGFR amplification. Also, they observed that
immune-related responses correlated with the presence of
specific genetic alterations. Samples with CDK4 locus
amplification or IDH1 mutations were found to be less
infi ltrated by macrophages, and to have less CD4+
components. On the contrary, samples with NF1 inactivation
had a higher macrophage content. This observation has been
confirmed in the study of Wang et al. (98). Even though none of
the cell components described in the work by Luoto et al.
correlated with patient survival, the presence of high activity
related to the "antigen presentation and interferon response"
cluster was a positive predictor of longer OS. Similarly, Caleb
Rutledge W. et al., also found a correlation between tumor-
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infiltrating lymphocytes (TILs) and GBM transcriptional
subclasses and they show that TILs were enriched in the
mesenchymal class compared with all other classes (99). Also,
they did not observe a correlation between IDH1 mutation and
TIL presence, nor did they with patient OS (99).

The correlation of IDH1 status and TME composition has
been extensively characterized (94). In general, as presented
above, IDH1-mutant (mIDH1) gliomas tend to be less
populated with TILs when compared to IDH1-wt tumors.
Specifically, less CD8+ cytotoxic T cells have been found in
mIDH1 gliomas and this could be explained by the reduced
expression of chemoattractant cytokines to T cells by mIDH1
glioma cells (100, 101). Also, and in correlation to what Luoto et
al. found, mIDH1 gliomas tend to have less macrophages than
wt-IDH1 tumors (97). Moreover, in an animal model of mIDH1
glioma in the context of ATRX and TP53 mutations, it has been
observed that the presence of this mutation reprograms the tumor
cell transcriptome, which affects not only immune cell infiltration
but also the bone marrow differentiation of the granulocytic lineage
(15). This effect was found to be mediated by G-CSF secretion by
mIDH1 glioma cells, which prompted the expansion of pre-
neutrophils, while reducing the immunosuppressive phenotype of
the granulocytes encountered in mIDH1 tumors’ TME (15).

Tumor microenvironment in pediatric gliomas has been less
characterized than the adult counterpart, in part because of the
small amount of samples available. Thus, it is difficult to correlate
molecular subtypes of pediatric tumors with TME infiltration
patterns. However, the data gathered so far in the pediatric
population show differences in relation to the immune infiltrate
characteristics observed in adult patients. In the study of Plant et
al., they analyzed 22 pediatric brain tumor tissue samples of
mixed diagnoses and they observed no correlation between the
amount of T cells and the aggressiveness of the tumor or the
patient survival (102). Griesinger et al., analyzed different types
of pediatric brain tumors, which consisted in 7 pilocytic
astrocytomas (PA), 19 ependymomas (EPN), 5 GBM, 6
medulloblastomas (MED), and 5 non-tumor brain (NT)
control samples. They show PA and EPN to be the most
enriched tumors in myeloid cells, with GBM at the third place,
but still with more myeloid cells than the NT samples (103).
These cells expressed makers for both, immune activation (HLA-
DR and CD64) and immunosuppression (CD206 and CD163). T
cell infiltration was also evaluated and GBM had more T cells
than the NT control (0.79% vs 0.02%), exhibiting a 46-fold and
26-fold increase in CD8 and CD4 T cells, respectively. Also, the
average CD8/CD4 ratio, which was shown to be a prognostic
factor in other types of cancer, was elevated in GBM with respect
to NT controls: 2.83 vs 0.83, respectively (103). Moreover,
Lieberman et al., studied the TME in DIPG, a pediatric high
grade glioma that occurs in the pons. They conclude that the
TME of these tumors do not show strong evidence of
immunosuppression or inflammation, so that immune-directed
therapies against these tumors should focus on immune cell
recruitment to the tumor site (104). In this regard, Mendez et al.
demonstrated the efficacy of an immunestimulatory gene therapy
in increasing the median survival of tumor bearing mice in a pre-
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clinical mouse model for DIPG harboring mutant ACVR1 gene
(66). They show that this therapy was effective in promoting the
activation and the infiltration of anti-tumor CD8 T cells (66).
Lastly, using a model for pediatric HGG harboring the H3.3-
G34R mutation it has been demonstrated that these tumor
exhibit a more permissive TME with respect to the control
group without the mutated histone (105, 106). Researchers
show that H3.3-G34R tumors are less populated with MDSC
and that these cells are not immunosuppressive. Also they
observed an increased infiltration of T cells, DCs and M1
macrophages; and an increased sensitivity of glioma cells to
IFNg-induced apoptosis (105, 106).

In conclusion, these data gathered from clinical samples and
pre-clinical models highlight the complexity of the immune cell
infiltrate in brain tumors and the importance of taking into
account the particularities of each type of glioma when
considering the application of immune-mediated therapies.
MOUSE MODELS TO STUDY GLIOMA
IMMUNE MICROENVIRONMENT AND
POSSIBLE THERAPIES

The dismal prognosis of glioma patients demonstrates the need
to faithfully model the formation and the biology of this tumor
type to enable successful anti-glioma therapies. Immunotherapy
has emerged as a promising approach to treat growing number of
cancers (107, 108), but none has been effective in improving the
survival of GBM patients (59, 109, 110). However, researchers
working on GBM believe that immunotherapy could establish
successful treatment regimens where other treatments have not
been successful (111, 112).

Genetic, histological and physiological modifications are
involved in the evolution of glioma’s malignancy and invasive
phenotype. A good glioma animal model would enable the
identification of signaling pathways which are related to tumor
initiation, invasion, malignancy and therapeutic resistance.
Ideally, the model should accurately resemble histologically
and genetically the human disease. It should also display the
cellular heterogeneity observed in glioma patients. Most glioma
tumors have been previously modeled either in immunodeficient
(113–115) or immunosuppressed (116) animals. However, these
models have important drawbacks in terms of the lack of
interactions with the adaptive immunity, which is key to fight
this tumor. Also, tumors in immunocompetent mice exhibit
characteristics similar to clinical pathophysiology in patients
with glioma, characterized by immune infiltration and strong
neovascularization, which are absent in brain tumors developed
in immunodeficient mice (117).

Preclinical syngeneic murine glioma models are crucial to
determine the immune response of novel therapies prior to its
human clinical trial. The use of animal models of malignant
glioma shed light on the composition of the TME, its influence
on disease progression and outcomes, as well as on new
therapeutic targets for treatment (118). The method widely
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used in glioma biomedical research is intracranial or
subcutaneous injection of tumor cells like C6, 9L or GL261
into mice or rats. These syngeneic models are used to study the
biology of glioma or new therapeutic agents. Also, there are other
syngeneic murine glioma models, such as SMA560, GL26, CT-
2A, 4C8 mouse models and 9L, RG-2, F98 and CNS-1 rat glioma
models which maintain the immunological interaction between
the tumor cells and the host (16).

GL261 model is perhaps the most extensively used syngeneic
mouse model of GBM. This model is reported to recapitulate
histologic and biological characteristics of GBM (16). Furthermore,
this model employs immunocompetent mice, and thus is suitable to
analyze GBM tumor immunology and to perform
immunotherapeutic research (119). Among the reported pre-
clinical applications of this model, we can mention: the use of
adoptive T cell transfers to restore and induce long-term immunity;
the use of antibodies to improve antitumor T cell activity via
augmentation of costimulatory signals; the abrogation of survival
advantages of Tregs; and the enhancement of tumor immunogenicity
using IL12 based gene therapy to stimulate robust cytotoxic T cell
responses (119), as GL261 express unique tumor antigens which can
induce a specific T cell responses (120). Moreover, this model has
been employed to study the immunosuppressive effects of TGFb,
which promotes Treg activity (121). Also, GL261 has been used to test
the efficacy of a peptide vaccine using GL261-specific antigens and a
TGFb neutralizing antibody (1D11) (122). In another study, GL261-
based DC vaccines have been curative and preventive of tumor
engraftment (119). Thus, these results have helped to validate GL261
as one of the model of choice for investigating immunotherapeutic
treatmentmodalities against GBM. Likewise, GL26model enables the
study of immunotherapies. GL26 tumors express melanoma
associated antigens gp100 and tyrosinase-related protein 2, both of
which can be used to pulse DCs, which would in turn stimulate
cytotoxic T cell-mediated robust antitumor immune response (123).
Other immune-mediated strategies tested with GL26 model include
Treg depletion using PC61, which is an antibody directed against
CD25, one of the primary markers for Tregs (124).

SMA-560 tumors are an excellent model of anaplastic
astrocytoma with low S-100 expression and high expression of
glial fibrillary acid protein (GFAP) and glutamine synthetase,
providing a representative model of glial tumors of astrocytic
lineage (125). These tumors lack MHC Class II molecules, but do
express MHC Class I at low levels which highlights their potential
for antigenic recognition by traditional effector T cells (126). They
also express TGF-b which lends great value to this model (126).
SMA-560 model has been used to test the efficacy of the induction
of secretion of selected cytokines such as IL2, IL4, IL3, IL6 or TNFa,
which resulted in an increase in MS of VM/Dkmice (126). Another
study also showed that the over-expression of a soluble form of
CD70 ligand in SMA-560 tumor cells, reduced tumor growth rate
and increased host animal survival (127). Also, this model was used
to investigate DC and CAR-T cell based therapies’ outcomes for
radio-resistant glioma cells (128).

Histologically, CT-2A tumors show features of high-grade
astrocytomas, including pleomorphism and high cellular density,
and can undergo malignant transformation with evidence of
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pseudopalisading necrosis (129). Compared to established
glioma cell lines, CT-2A cells are significantly more
proliferative and invasive (130), but less invasive than other
mouse brain tumors (131). CT-2A share similarities with neural
stem cells, like primary human GBMs grown ex-vivo, and express
stem cell markers such as CD133, Oct and Nestin (132). Overall,
the CT-2A model is considered to accurately represent several
GBM characteristics including intra-tumoral heterogeneity, in
vivo migratory patterns, radio-resistance, and chemo-resistance
(129). By virtue of its brain tumor stem cell-like properties, the
CT-2A model could provide a resource for studying the role of
tumor stem cells in the immunological landscape of gliomas.
Moreover, since CT-2A is deficient in PTEN and this deficiency
contributes to tumor induced immunosuppression (133), this
model can be utilized to devise strategies for mitigating PTEN
deficiency-associated immune effects (134).

4C8-B6D2F1 tumor model was developed to address the
shortcomings observed with other glial tumors (135). The 4C8
cells adopt oligodendrocytic characteristics in vitro, but convert
to GFAP+ astrocytes when exposed to serum (136). Implantation
of 4C8 into B6D2F1 mice produces pleomorphic, highly cellular
tumors with extensive invasion into ventricles and meninges
(135). They also express components of MHC I and II molecules
(137). Intratumoral injections with vaccines and viruses
engineered to secrete IL-12, have shown to promote significant
anti-tumor activity, with detected immune cell infiltration, and
minimal toxicity (138).

The RCAS/tv-a system is a model that allows the somatic transfer
of oncogenes driving glioma development, enabling the development
of tumor in situ. This method has been used to initiate tumors in
newborn mice, by the introduction of genetic alterations into brain
cells engineered to express tv-a receptor (139). Genes used to initiate
brain tumors could be PDGF andKras overexpression. These animals
can then be crossed onto other genetic backgrounds in order to study
the effects of particular mutations on tumor biology (140, 141). It has
been observed that the oncogenes Kras and PDGF produce more
malignant gliomas in mice with Ink4a-Arf-/- and PTEN loss
backgrounds compared with those gliomas generated in wt mice,
which develop lower-grade tumors (139, 142). Hambardzumyan D et
al. described a protocol to develop gliomas in adult mice, which
represent an excellent tool for studying the tumor immune
microenvironment and immunotherapeutic approaches in adult
gliomas (141, 143). Even though this model has not been widely
used for the study of glioma’s TME, it has been observed that, similar
to what it is observed in the clinical setting, tumor malignancy of the
gliomas generated with the RCAS system correlated with an influx of
macrophages, which was influenced by tumor signal transducer and
activator of transduction (STAT) 3 expression (144). In the same
study, the authors report that STAT3 inhibition with WP1066
increased the MS of mice bearing brain tumors expressing PDGF-B
+ Bcl-2 (144).

Another syngeneic model to generate gliomas in situ can be
achieved by the Sleeping beauty (SB) transposon system (145).
This method allows high-level stable gene transfer and sustained
gene expression in many somatic cell types (146). The SB
transposon system, member of the Tc1/mariner class of
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transposons, is capable of recognizing inverted repeats/direct
repeats (IR/DR) sites on DNA transposons and performing a
cut-and-paste reaction to integrate transposable DNA segments
into a host genome (145, 147). This method has been used to
develop endogenous tumors that mimic gliomas by delivering
DNA transposons that encode for the genetic lesions of interest.
Our laboratory has developed a series of syngeneic GBM models
using this method. For instance, we have engineered ATRX-
deficient gliomas (148, 149), by injecting plasmids encoding SB
transposase/firefly luciferase, plus other plasmids encoding for
the desired genetic alterations located between IR/DR: shp53,
NRASG12V, and shATRX, into the lateral ventricle of neonatal
mice (148). Also, using SB transposon system, we have
developed: a DIPG murine tumor model of mACVR1-G328V
by injecting plasmids encoding for NRASG12V, shp53, and
mACVR1-G328V (66); a mIDH1 murine tumor model by
injecting plasmids encoding for NRASG12V, shp53, shATRX
and IDH1-R132H (44); and a H3.3-G34R murine high grade
glioma model by injecting plasmids encoding for NRASG12V,
shp53, shATRX and H3.3-G34R (67, 150). This method has the
advantage that the tumors developed can be resected, processed
as a single cell suspension, and grown in vitro as neurospheres.
These neurospheres can be further implanted in adult C57BL/
6 mice.

Recently, Patel SM et al. described a method for in utero
electroporation of neural stem cells to generate an in situ mouse
model for DIPG tumors, a highly aggressive glioma that grows in
the pons in pediatric patients (151). They used PiggyBac DNA
transposon plasmids to induce the expression of different
combinations of PDGFB, Pdgfra-D842V, or Pdgfra-WT, along
with dominant negative Trp53 (DNp53) and H3.3K27M
expression. They report the induction of gliomas from grades
IV to II, which depended on the plasmid combination (151).
These tumors displayed histopathological features of the human
disease and represent an invaluable tool for the modelling of the
TME in DIPG, as the development of the gliomas in this model
resembles their development in humans. Also, to better depict
the inter-person heterogeneity in immune response and glioma
genetic make-up, Aslan K et al., described the use of an
hypermutated orthotopic glioma syngeneic mouse model,
exhibiting more than 100 non-synonymous mutations per
tumor exome. This model was used to study the dichotomy in
the glioma response to immune-checkpoint blockade and to
develop a method to try to predict the therapy outcomes by
imaging MRI technique (152).

An alternative humanized mouse model system has also been
developed to evaluate the efficacy of various GBM
immunotherapies. Humanized models are generated by the
engraftment of human cancer cell lines, or human patient-
derived xenograft (PDX) tumors into immunodeficient NSG
mice with an HLA-matched human immune system, which is
achieved by the transplantation of human PBMCs, or CD34+
hematopoietic stem cells (HSCs). Transplanted CD34+ HSCs in
immunocompromised mice differentiate into human helper and
cytotoxic T cells, B cells, monocytes, NK cells, and DCs (153).
Humanized mice can survive months post-tumor implantation
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with relatively stable proportions of human cells. Human
microglia/macrophage-like cells have also been developed in
the brain of CD34+ HSC humanized mice (154). These models
have the advantage of recapitulating tumor heterogeneity and
clonal diversity, which mimics the human tumor immune
microenvironment and can be used to investigate the biology
of GBM (109, 155). Nevertheless, the humanized mouse platform
is being improved in such a way that immunotherapeutic
research could become more predictive. The use of humanized
mouse models in GBM preclinical and clinical studies is
currently limited due to the lack of knowledge and unanswered
questions, such as whether humanized mice models display the
clinical features of glioblastoma patients. For instance, Ashizawa
T. et al., investigated the efficacy of the anti-PD-1 antibody using
humanized NOG-dKO mice, generated by implanting human
PBMCs and GBM cell line U87 (156). In this study, there was no
rejection of the human glioma cells or the PBMCs, and T-cell and
NK-cell anti-tumor immune responses were detected, thus
constituting an interesting model to evaluate the effect of
immunotherapeutic agents against glioma. Despite these
advantages, humanized mouse models are partial in
maintaining the cellular and mutational diversity of parental
tumors and entail an extended generation time (157, 158).
Patient-derived glioblastoma organoids (GBOs) that
recapitulate the histological features, cellular diversity, gene
expression, and mutational profiles of their corresponding
parental tumors have recently been developed and biobanked.
When GBOs are transplanted into adult rodent brains, they show
rapid, aggressive infiltration and high reliability (157).

While there is no perfect murine model to study
immunotherapies for glioma, syngeneic tumor models in
immunocompetent mice represent a valuable resource for this
purpose. The transplantable models presented are convenient
because tumor location and growth can be better predicted and
thus, the testing of different therapies and their relationship with
the immune system can be more easily studied. Although
orthotopic xenografts retain some of the human GBM features
and are considered to be a useful model for therapeutic studies
(159), it lacks the proper immune environment due to the use of
immunocompromised mice, which is a drawback for the study of
tumor immunology and anti-tumor immune-stimulatory therapies.
STRATEGIES TO OVERCOME
IMMUNOSUPPRESSIVE
MICROENVIRONMENT: CURRENT
THERAPEUTIC MODALITIES UNDER
CLINICAL TRIAL AND UNDER PRE-
CLINICAL INVESTIGATION

Immune Checkpoint Blockade
Immune checkpoints (IC) are negative regulators of the immune
system that maintain self-tolerance, avoid autoimmunity and
adjust the extension and duration of the immune responses to
prevent tissue damages (160). The mechanism involves the
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interaction between IC receptors with its ligands, acting as a
natural feedback loop that inhibits and reduces inflammation.
Likewise, cancer cells could express IC ligands as a way to evade
immune-media ted e l iminat ion . Examples of these
immunomodulatory molecules, which are negative regulators
of T cell activation and function, include the cytotoxic T
lymphocyte antigen 4 (CTLA-4), the programmed cell death 1
(PD-1) and its ligand PD-L1, TIM-3, the enzyme indoleamine
2,3-dioxygenase (IDO), V-domain Ig suppressor of T cell
activation (VISTA), killer-cell immunoglobulin-like receptor
(KIR), TIGIT, B and T lymphocyte attenuator (BTLA) and
LAG-3. Amongst them, CTLA-4, IDO and PD-1/PD-L1 are
the most studied molecules inhibitors for which have been
developed and evaluated in preclinical and clinical assays (160).

First attempts in developing IC inhibitors (ICIs) were focused
in CTLA-4 molecule. CTLA-4 is a co-inhibitory receptor present
on the surface of Treg that was discovered in the late 80´s (161).
CTLA-4 has the B7 family of proteins (B7-1 or CD80 and B7-2 or
CD86) as natural ligands, which are found at the surface of
antigen presenting cells (APC). Even though CTLA-4 shares
structural and biochemical similarities with CD28, a potent co-
stimulatory receptor of T cells, CTLA-4 and CD28 have opposite
immunoregulatory functions. Binding of CTLA-4 to B7 ligands
has a 20-100 fold higher affinity than CD28, so when both are
present, T cell activation is prevented and cytokine production
switches to an immunosuppressive pattern, i.e. IL-10, TGFb, and
indoleamine (162).

Despite the lack of correlation between CTLA-4 ligand
expression and a specific cancer cell type and the fact that
Ctla-4-knockout mice models predicted lethal autoimmune
phenotypes, it was shown that CTLA-4 inhibition produced
antitumoral responses in preclinical cancer models (163).
These preclinical studies showed promising results in some
immunogenic tumors, using antibodies as a single agent or in
combination with other agents that stimulated immune
responses after tumor implantation, in the case of poorly
immunogenic cancer models (163) . Therefore , the
development of fully humanized anti-CTLA-4 antibodies led to
clinical testing of Ipilimumab and Tremelimumab. The first
clinical study of CTLA-4 antibody treatment was performed in
patients with advanced melanoma that were not responding to
conventional therapy (164). Ipilimumab is a IgG1 monoclonal
antibody that blocks the CTLA-4/CD80-CD86 interaction on
APCs and T cells, promoting co-stimulatory binding of CD28 to
CD80/CD86 (165). On the other hand, Tremelimumab is a
monoclonal IgG2 antibody with a similar CTLA-4 blocking
mechanism; but it only received orphan drug designation from
the FDA for malignant mesothelioma (166).

Several pre-clinical trials evaluated the effects of CTLA-4
inhibition in GBM mouse models, showing differences in the
outcomes depending on the tumor model evaluated. CTLA-4
blockade alone resulted in 80% of long survivors and abrogated
Treg expansion in SMA-560 tumor-bearing mice (167).
However, in other studies, the efficacy of this treatment was
much lower, with 40 to 15% long term survivors (168, 169), or
did not elicit antitumor efficacy (9). A significant challenge to
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effectively asses the efficacy of ICIs in GBM is to develop better
pre-clinical animal models. In this sense, the SB28 GBM model
recapitulate human GBM features, like low mutational levels and
loss of MHC-I expression (170). Besides these technical issues,
the sole inhibition of CTLA-4 in the immunologically suppressed
microenvironment of GBM may not be effective to trigger a
successful antitumoral immune response since this receptor is
only present on T cells (171). In fact, our previous findings
indicate that although the treatment with anti-CTLA-4 in GL26
GBM-bearing mice did not elicit antitumor effects, it boosted the
efficacy of immune-stimulatory TK+Flt3L gene therapy (9).
Moreover, even though preclinical data of CTLA-4 inhibition
showed potential effects for GBM treatment, several adverse
effects occur through a rapid and nonspecific activation of the
immune system. In this regard, a Phase 1 clinical trial of
Nivolumab (anti-PD-1) alone or in combination with
Ipilimumab in patients with recurrent GBM showed no
differences in OS but higher toxicity with the addition of anti-
CTLA-4 to the treatment (172).

PD-1, which was first identified in 1992 as a putative pro-
apoptotic receptor (173), plays a major role in limiting immune
response and regulates T cell biology (174). While CTLA-4 acts
early on T cell activation inhibition in the lymph nodes, PD-1
immune checkpoint controls the activity of T lymphocytes in
peripheral tissues (175). PD1 ligand 1 (PD-L1; also known as B7-
H1 and CD274) and PD-L2 (also known as B7-DC and CD273)
serve as ligands for PD-1. They are present constitutively on
resting T cells, dendritic cells, B cells, natural killer cells and
macrophages, and can be induced in non-haematopoietic tissues
by pro-inflammatory cytokines (176, 177). Specifically, tumor
cells can express these ligands, protecting them from immune
system eradication (178). For instance, the term “innate immune
resistance” makes reference to PDL1 gene amplification or the
upregulation of PD-1 ligands by constitutively active signalling
pathways on tumor cells (179–182). On the other hand, the
“adaptive immune resistance” situation makes reference to PD-
L1 expression by tumor cells in response to IFNg release by T
cells (183, 184).

The interaction PD-1/PD-L1 provokes effector T cells cell
cycle arrest and the down-regulation of cell survival molecules
like Bcl-XL, the dephosphorylation of ZAP70, and the
phosphorylation of PI3K by the recruitment of SHP1 and
SHP2 phosphatases (185). PD-1/PD-L1 axis disruption was
thought to be a promising approach to overcome T cell
inhibition and to promote an antitumoral immune response.
In this regard, numerous studies have shown successful results in
the treatment of metastatic melanoma (186, 187), Non-small cell
lung cancer (188) and renal cell carcinoma (189). Preclinical
studies using orthotopic mice models of GBM showed that PD-1
inhibition promoted NK cytotoxic effects against cancer cells
when used as a single agent (190, 191) or in combination with
radiotherapy (192). However, most clinical trial studies using
anti-PD-1/PD-L1 monotherapy have shown limited efficacy in
GBM patients (193).

Checkmate 143 was a Phase III clinical trial evaluating ICIs
(Ipilimumab + Nivolumab) in GBM patients. It was concluded
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that Nivolumab as monotherapy was better than the
combination, due to increased adverse effects when combined
with Ipilimumab, and a significant increase in OS in comparison
to the current therapy with Bevacizumab was not observed (194).
In the case of PD-L1 inhibitors, a Phase 1 clinical trial of
Atezolizumab as monotherapy in patients with recurrent GBM
have shown no improvements in survival (195).

In conclusion, anti-PD-1 immunotherapy has been extensively
evaluated in mouse models, and in clinical trials as monotherapy or
in combination with other treatments, offering novel approaches for
the treatment of GBM (Table 1) (12). Additionally, anti-PD-L1
immunotherapy has also been well evaluated in clinical trials
(Table 2). Although the efficacy of ICIs as single agents has
shown no satisfactory results in GBM, it is necessary to evaluate
their efficacy as complements of other active immunotherapeutic
strategies, such as vaccines and/or immune-stimulating gene
therapies, which promote T cell infiltration, the subsequent IFNg
production and PD-1/PD-L1 upregulation.

IDO is an enzyme with an essential role in the catabolism of
tryptophan (Trp) into different metabolites, like kynurenines
(Kyn). Although it is not considered as a classical checkpoint, it is
included in this group of molecules because it has powerful
immunosuppressive properties (196, 197). IDO expression in the
context of tumor immunity has been associated to cancer and
immune cells (198). IDO contributes to immunosuppression
activities by increasing Kyn levels and depleting Trp, which
inhibit effector T cells and NK cells, and promotes Treg
proliferation (198). This enzyme has been shown to be
upregulated in almost all GBM patients (199) and its high
expression correlates with malignancy (200). In this sense, a
pre-clinical study of TMZ in combination with an IDO inhibitor
showed tumor growth reduction and an increase in long-term
survival of mice with GBM (201). Encouraging preclinical results
led to several clinical trials with IDO1 inhibitors, but
unfortunately administration as single agent did not show
significant antitumoral activity. Nowadays, several clinical trials
are being conducted in order to test IDO inhibition efficacy, in
combination with TMZ and radiotherapy (NCT03532295,
NCT02502708 and NCT04049669). Similarly, another trial
tested the combination of an IDO inhibitor (INCB024360)
with Nivolumab, Anti-GITR MAb and Ipilimumab in patients
with recurrent GBM (NCT03707457). However, after a failed
Phase III trial in melanoma, with no differences in progression
free survival (PFS) or OS, it was proposed that IDO is not an
appropriated target in cancer (202). However, it is possible that
more effective and specific inhibitors need to be developed in
order to successfully block IDO pathway in cancer (203).

Trp degradation to Kyn by IDO1 and TDO2 provokes Trp
starvation, which causes the subsequent activation of general
control nonderepressible 2 (GCN2), decreasing general protein
production. IDO-activated GCN2 also affects T cells
proliferation and effector function, by inhibiting fatty acid
synthesis, promoting T-regs activation (204), Platten, 2012
#122}. In this sense, Trp degradation has been recognized as an
important microenvironmental factor with immunosuppressive
properties. Particularly, the IDO/TDO-Kyn-AhR enzymatic
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cascade has emerged as an interesting pathway to develop novel
therapeutic strategies and overcome tumour immune scape in
GBM. In this regard, besides several IDO inhibitors that are being
tested in preclinical and clinical trials, Kyn has been shown to be an
interesting target due to its aryl hydrocarbon receptor (AhR) agonist
activity. AhR activation promotes the generation of immune-
tolerant DCs and T-regs (205). Thus, the approach of depleting
extracellular Kyn has shown promising efficacy in mouse models.
Engineered KYNase catalyses the synthesis of anthranilic acid from
Kyn, promoting effector T cell infiltration into the tumour (206).
Finally, several AhR antagonists are being tested in preclinical
studies (207). However, due to their broadly effects inhibiting any
AhR ligand (endogenous and exogenous), development of
antitumoral AhR therapies is in early stages (207). In this sense, it
remains to be elucidated if this approach will show anticancer
activity by acting on cancer cells or by modulating immune
responses, and if they achieve optimal pharmacokinetic/
pharmacodynamic profiles (204).

Macrophage Reprogramming
The heterogeneous microenvironment of glioblastomas contains
an enriched proportion of non-tumor cells which characterize
the TME. Although the quantity of lymphocytes is very low, the
tumor-associated macrophages (TAM) have been described as
one of the major populations of GBM’s TME. TAM comprises
two main subpopulations, the microglia (MG) and the
monocyte-derived macrophages (MDM) (208, 209). MGs are
the resident immune cells of the central nervous system
specialized to monitor and respond to pathogens or injuries
(210) and MDMs are peripheral bone marrow derived cells that
infiltrate the TME. Despite different origins, these two
populations function as immune-suppressed cells of the TME
which diminish T-cell response and promote tumor progression
and invasion (209). Different studies have shown that the pro-
tumorigenic role of TAM is promoted by their interaction with
glioma cells through mutual paracrine signaling. Different
released factors have been involved in TAM-GBM interaction
and the shift of TAMs to an M2 phenotype, which is
characterized by anti-inflammatory properties and reduced
phagocytic activity. Several studies have demonstrated that
CSF1 could act as MG chemoattractant and that TAM released
factors, such as the epidermal growth factor (EGF), TGFB1, IL-
10, TNF, MMP14, MMP2, can promote GBM migration and
invasion (211–213). Due to the immune-suppressing role of
TAM in tumor progression, this population became a novel
target for antitumor immunotherapies (213).

Different strategies have been focused on the impairment of
macrophage tumor recruitment and on the reprogramming of
phagocyte innate immune surveillance functions of MDM and
MG (Figure 1).

Recent studies have shown that the CSF1 ligand is expressed
in glioma cells and TAM. The CSFR1R is only expressed on
macrophages (214). Inhibition of CSF1R using the blood-brain
barrier permeable compound BLZ945, significantly decreased
tumor growth and extended survival in a mouse model of GBM
and patient-derived xenografts models. Treatment efficacy was
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TABLE 1 | PD-1 inhibitor treatments approved by the FDA and in clinical testing for GBM patients.

Clinical trials investigating the use of ICIs for treatment of GBM

Drug Target Name Year Clinical
Phase

Arms

PD-1 Nivolumab Neoantigen-based personalized Vaccine
Combined with Immune Checkpoint Blockade
Therapy in Patients with Newly Diagnosed,
Unmethylated GBM

Actual Study
Start Date:
October 31,
2018
Actual Primary
Completion Date:
May 25, 2020
Estimated Study
Completion Date:
February 26,
2021

I Arm A: NeoVax + Nivolumab (at progression)
Arm B: NeoVax + Nivolumab (at Cycle 2)
Arm C: NeoVax + Nivolumab (at Cycle 1)

GMCI, Nivolumab, and Radiation Therapy in
Treating Patients with Newly Diagnosed High-
grade Gliomas

Actual Study
Start Date:
February 27,
2018
Estimated
Primary
Completion Date:
February 28,
2021
Estimated Study
Completion Date:
February 28,
2021

I Arm A: MGMT Unmethylated patients; AdV-TK injection into
resection cavity, valaciclovir 14 days, radiation after 8 days,
TMZ after valaciclovir, Nivolumab every 2 weeks to 52 weeks
Arm B: MGMT Methylated and undetermined patients; AdV-TK
injection into resection cavity, valaciclovir 14 days, radiation
after 8 days, TMZ after valaciclovir, Nivolumab every 2 weeks
to 52 weeks

Translational Study of Nivolumab in
Combination with Bevacizumab for Recurrent
Glioblastoma

Actual Study
Start Date:
October 1, 2018
Estimated
Primary
Completion Date:
February 1, 2022
Estimated Study
Completion Date:
August 1, 2022

II Arm A: Nivolumab + Bevacizumab in patients not undergoing
salvage surgery
Arm B: Nivolumab + Bevacizumab in patients not undergoing
salvage surgery

Pembrolizumab Combination Adenovirus + Pembrolizumab to
Trigger Immune Virus Effects (CAPTIVE)

Study Start Date:
June 2016
Estimated
Primary
Completion Date:
December 2020
Estimated Study
Completion Date:
June 2021

II Intratumoral DNX-2401 (a genetically modified oncolytic
adenovirus) followed by IV Pembrolizumab

Laser Interstitial Thermotherapy (LTTI)
Combined with Checkpoint Inhibitor for
Recurrent GBM

Actual Study
Start Date:
November 29,
2017
Estimated
Primary
Completion Date:
December 2020
Estimated Study
Completion Date:
January 2021

l/ll Arm A: IV Pembrolizumab 7 days pre-surgery with LITT
Arm B: IV Pembrolizumab 14 days post-surgery with LITT
Arm C: IV Pembrolizumab 35 days post-surgery with LITT

PVSRIPO and Pembrolizumab in Patients With
Recurrent Glioblastoma

Estimated Study
Start Date:
September 2020
Estimated
Primary
Completion Date:

I Single Arm: PVSRIPO intratumoral infusion followed by
intravenous Pembrolizumab 14 to 28 days later, and every 3
weeks, thereafter

(Continued)
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related to M2 macrophage polarization inhibition, but not TAM
depletion in tumor treated mice. Molecular analysis of TAM
showed that this population had an inhibited expression of some
M2 polarization markers, such as Arg1, F13a1, Mrc1, and Adm
(215). Although, different inhibitors such as BLZ945, RG 7155,
Frontiers in Oncology | www.frontiersin.org 12
PLX339 have been tested in clinical trials, blocking of CSFR1
remains challenging and requires further studies.

TAM survival is maintained by factors released by glioma
cells, such as interferon-g (IFN-g) and granulocyte-macrophage
colony stimulating factor (215, 216).
TABLE 1 | Continued

Clinical trials investigating the use of ICIs for treatment of GBM

Drug Target Name Year Clinical
Phase

Arms

March 2023
Estimated Study
Completion Date:
March 2023
TABLE 2 | PD-L1 inhibitor treatments approved by the FDA and in clinical testing for GBM patients.

Clinical trials investigating the use of ICIs for treatment of GBM

Target Drug Clinical trial
ID

Name Year Clinical
Phase

Arms

PD-L1 Avelumab NCT03047473 Avelumab in Patients with
Newly Diagnosed
Glioblastoma Multiforme

Actual Study Start Date: March 10, 2017 Estimated Primary
Completion Date: September 2022 Estimated Study
Completion Date: September 2022

II Addition of Avelumab to
standard therapy of TMZ
and radiotherapy
Jun
e 2021 |
FIGURE 1 | Current and novel immunotherapeutic strategies for GBM treatment under pre-clinical and clinical investigation. Current immunotherapeutic strategies in
GBM include oncolytic viruses that can destroy glioma cells through immunogenic cell death without affecting non neoplastic brain cells, TAM reprogramming and
the use of CAR T cells. Activation of immune checkpoint ligands such as PD-1, CTLA-4, and IDO can help tumor cells to escape immune surveillance. Thus,
inhibition of them can effectively inhibit glioma progression and improve the response to other active immunotherapeutic strategies, such as DC vaccines and
immunostimulant gene therapy. GBM antigens, including IL-13Ra2, HER2/neu and EGFRvIII are present in tumor cells. These tumor-associated antigens are targets
of genetically modified CAR-T cells or peptide vaccines. Also, novel strategies are being studied currently in the pre-clinical setting, addressing more efficient ways to
cross the blood-brain barrier (BBB), such as nanodiscs, and the modulation of the activity of novel targets. Created with BioRender.com.
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The combined treatments of CSFR1 inhibitors with PD-1 or
PDL-1 monoclonal antibody are promising avenues under
investigation in clinical trials (216). Also, the combination of
triple therapy using checkpoint inhibitors (anti-CTLA-4 and
anti-PD-1), and immune-virotherapy showed effective M1
polarization of macrophages and tumor eradication (217).
Other combinational therapy approach inhibiting the
Neuroglial-2/Chondroitin sulfate proteoglycan-4 (NG2/CSPG4)
axes using the antibody mAb9.2.27 together with activated NK
cells in preclinical animal models of gliomas decreased tumor
growth, by increasing recruitment of CCR2low MDM to the
TME and by amplifying ED1 and MHCII expression on
MG (218).

Likewise, other studies showed that therapies using dual
inhibitors of VEGF and Angiopoietin-2 (ANG-2) axes led to
modifications in TAMs. A2V bi-specific antibody or dual
therapies utilizing Cediranib and MEDI3617, reprogramed
macrophages to antitumor M1 phenotype, inhibited TAM
recruitment and delayed tumor growth and progression (219, 220).

Further research studies demonstrated that CXCR4 signaling is
involved in the recruitment of TAM to the TME. Inhibition of this
axis using the clinically approved drug AMD3100 prevents BMDCs
infiltration, tumor revascularization, and abrogate tumor recurrence
(218). Moreover, a recent phase I/II clinical trial study showed
positive results in macrophage recruitment inhibition and local
control of tumor recurrences after irradiation therapy using a
reversible CXCR4 inhibitor Plerixafor (221).

Glioma cells redirect macrophages activating signals to a pro-
inflammatory M2 state. This strategy has been related to the
overexpression of Spp1 (secreted phosphoprotein 1 or
osteopontin) and Mgfe8 (milk fat globule-EGF factor 8 or
lactadherin) on glioma cells and human glioblastoma tissue,
which prompt M2 reprogramming of MG as a result of
integrin signaling activation. Furthermore, downregulation of
Spp1 and Mgfe8 within glioma cells inhibits the amoeboid
transformation of myeloid cells and redirect M2 microglia/
macrophages phenotype impairing glioma growth (222).

The latest strategies developed have been related to the
targeting of CD47/SIRPA (signal regulatory protein alpha)
pathway. CD47 is a transmembrane protein overexpressed in
glioma cells that binds to the receptor SIRPA on the surface of
monocytes/macrophages and MG cells inhibiting phagocytic
functions and allowing tumors to escape the innate immune
surveillance. Transcriptomic analysis of human gliomas has
shown that high expression of CD47 correlates with overall
survival, which makes CD47 a novel prognostic marker (223,
224). The mechanism of activation of CD47/SIRPA includes the
activation of ITIM (immune-receptor tyrosine-based inhibitory
motif) and subsequent signalling through the activation of
PTPN6 (protein-tyrosine phosphatase non-receptor type 6)
and PTPN11, inhibiting phagocytosis (225). Moreover,
preclinical studies based on orthotopic glioma models showed
that blocking CD47 using antibodies decreased tumor growth
and enhanced animal survival (223). Even though the major role
of CD47 inhibition has been attributed to peripheral macrophage
recruitment, Hutter, G. et al also demonstrated its effect on
Frontiers in Oncology | www.frontiersin.org 13
resident microglia. Using mouse glioma models which enable the
differentiation of genetically labelled MDM (Ccr2 RFP) and MG
(Cx3cr1 GFP), they showed that microglia associated tumor cells
increase tumor cell phagocytosis in response to CD47/SIRPA
axis inhibition (226). This data indicates that enhancement of
MDM and MG phagocytosis phenotype is a promising avenue
for glioma treatment. Recent clinical trial studies using 5F9, a
CD47 inhibitor, on other solid tumors showed a positive
response in combination with other anticancer treatments (227).

Another feature of malignant transformation in glioma is the
protein over-glycosylation ended by charged sialic acid in glioma
cells, which constitutes novel target. SIGLEC (sialic acid-binding
immunoglobulin-like lectin) proteins (14 different identified
variants) are receptors of sialic acid and they are mainly
present on immune cells (TAMs) acting as negative regulators
of phagocytosis. SIGLEC receptor activates immunosuppressive
signals after binding to sialic acids through the same signalling
pathways activated in the CD47/SIRPA axe as discussed above
(213, 228, 229). Examination of the sialic acid/SIGLEC pathway
has demonstrated that genetic and antibody ablation of
SIGLEC15 expands anti-tumor immune response and
obstructs tumor growth in mouse glioma models (230).

In summary, these studies show that regulation of TAM
recruitment to the tumor mass or re-education to a phagocyte
phenotype contributes to the anti-tumor response and inhibition
of glioma progression. Due to the diversity and plasticity of
TAMs, a better understanding of the mechanisms involved in
TAMs recruitment and reprogramming remain a challenge to
target these immune modulators of the TME for treatment.
Combination of conventional therapies, immune checkpoint
inhibitors together with TAMs regulation appears to be a
promising alternative to improve glioma immunotherapy and
halt glioma progression.

Therapies Aiming at the Stimulation of the
Immune System to Develop Anti-Tumor
Specific Immune Response
An additional group of immunotherapies are aimed at inducing
the development of antitumor specific responses, i.e. mediated by
specific T-cells or antibodies production. These therapies were
discussed in detailed before, and it is not the purpose of this
manuscript to review them on detail. Anti-tumor specific
response-inducing therapies can be summarized in:

• Oncolytic virus-mediated therapies, where oncolytic viruses
are targeted to the tumor cells to cause Immunogenic cell
death (ICD), stimulating the release of tumor-associated
antigens (TAA) and damage-associated molecular patterns
(DAMPs), which help to overcome the immunosuppressive
tumor microenvironment (231). In this way, ICD induces the
recognition of tumor cells by the immune system and the
development of long-term immunity (232). Furthermore,
OVs induce antiviral innate immune responses triggered by
pathogen-associated molecular patterns (PAMPs) (231).
Additionally, OVs can be genetically engineered to deliver
immunotherapeutic transgenes or to increase their tumor
June 2021 | Volume 11 | Article 631037

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Garcia-Fabiani et al. Genetic Alterations & Glioma Microenvironment
selectivity, enhancing their potential for oncolytic
immunotherapy (231–246).

• Suicide gene therapies, which comprises the delivery of genes
encoding a conditionally cytotoxic enzyme that converts a
non-toxic prodrug into a cytotoxic compound. In this way,
transduced tumor cells are destroyed, sparing normal cells
(247). The most evaluated suicide gene therapy for the
treatment of GBM is HSV- thymidine kinase (TK) plus
systemic administration of ganciclovir (GCV) (247).

• Peptide vaccines, where the main objective is to inhibit cancer
progression or relapse, by producing humoral (tumor-specific
antibodies) or cellular (cytotoxic T cells activation) responses
against tumors (20, 248).

• Dendritic cells (DC) vaccines. DCs are professional antigen
presenting cells (APCs), which function is to recognize,
process and present antigens to T cells in the context of the
major histocompatibility complex (MHC) I and II, in order to
activate T cells and subsequently the adaptive immune
response (12). Moreover, DCs are able to secrete pro and
anti-inflammatory cytokines that modulate the tumor
microenvironment. Autologous DCs can be loaded ex vivo
with tumor antigens, peptides, tumor lysates, viral antigens,
GSC or mRNA, among others, and then be administered back
to patients as an antitumor vaccine (8, 249). These autologous
DCs are usually differentiated from autologous monocytes by
the incubation with specific cytokines (12).

• CAR T therapy. Chimeric antigen receptors (CARs) are
recombinant receptors for specific targets found on cancer
cells. They are designed to redirect the specificity and function
of patient-derived cytotoxic T cells, which are ex vivo
genetically engineered to express the CAR and re-infused to
the patient (186, 250, 251).
INFLUENCE OF GENETIC ALTERATIONS
PRESENT IN GLIOMA SUBTYPES ON THE
RESPONSE TO IMMUNOTHERAPIES

Although the use of immune therapies to treat gliomas is still in its
early stages, i.e., in research and trial phases, the knowledge
accumulated in the field in CNS tumors and other solid cancers
indicate that the genetic makeup of the tumor is a predictive factor
of the efficiency of the immune therapies. Not only the genetic
information can predict if a treatment is likely to generate response
or not, but also the genetic alterations present in certain subtypes of
tumors can be exploited to devise tailored immunotherapies. In
solid tumors, it was observed that the mutational load is a positive
predictive factor of response to immunotherapy. A significant
proportion of gliomas have mutations associated with DNA
repair defects and genetic instability (252). As a consequence of
this, higher mutational burden, has been observed, particularly in
pediatric HGG patients with DNA repair-related germline
mutations (252). Although a recent study found no correlation
between mutational load and response to immune checkpoint
inhibition in glioma (253), it is likely that the treatment in this
Frontiers in Oncology | www.frontiersin.org 14
study was inefficient due to the poor penetrance of the immune
checkpoint inhibitors to the brain (254). In this respect, a patient
with Lynch syndrome (a genetic condition related with mismatch
DNA repair deficiency) who developed an IDH-mutant
glioblastoma was treated with a PD-1 inhibitor (Nivolumab),
remaining free of recurrence for 5 years (255).

Recent studies have described the peculiarities of the immune
compartment in gliomas, which is strongly immunosuppressive and
enriched in myeloid suppressor cells and exhausted and regulatory
T-cells (209). Recently, it was demonstrated that the interactions
between tumor cells and the immune microenvironment are
influenced by the genetic alterations of the tumors. For instance,
some studies reported that IDH mutations induce epigenetic
changes that lead to establishing an immunosuppressive TME
(94, 100). However, work from our team reported that infiltrating
immune myeloid cells in the mutant-IDH TME are devoid of
immunosuppressive properties. This highlights that it is not only
important to identify the presence of a particular immune cells
population using defined molecular markers, but also to assess the
functional activity of these cells, to be able to describe the
characteristics of the TME (15). In addition, it has been reported
that mutant-IDH glioma cells express lower PD-L1 levels due to
epigenetic reprogramming, suggesting a less immunosuppressive
environment. All this information is pivotal to devise therapeutic
approaches, e.g., the concept of combining mutant-IDH inhibitors
(to revert the suppressive TME) with immunotherapies. However,
considerable work still needs to be done in regards to the genetic
and functional characterization of immune cell populations in the
TME of gliomas. Single-cell RNA-seq allows the identification of
different immune cells within the glioma TME, and can inform on
whether certain molecular subtypes of glioma have more immune-
active or immune-suppressive environments. Another type of
technologies that can shed light into the characteristics of the
immune populations within glioma TME are the studies
performed in de novo genetically engineered animal models,
which can be developed in immunocompetent mice and allow to
dissect the effect of particular genetic alterations in the immune
TME (15, 44, 148). This type of studies will also help devising
tailored immunotherapies for specific gliomas. For instance, a group
of NF1-mutant low grade gliomas was demonstrated to be
associated with immune activation, increased cytolytic T-cell
infiltration and neoantigens production, and this group might
benefit from immunotherapies (256).

Another area where immunotherapies benefit from the
knowledge of the glioma genetic makeup is on the development
of CAR-T therapies or peptide vaccines. CAR-T therapies require
the identification of targets that are expressed on the surface of the
tumor cells and that are not expressed in normal cells. Interleukin-
13 receptor a2 (IL-13Ra2) was identified as a glioma specific
marker, and CAR-T therapy with cells targeting this protein was
evaluated in a clinical trial (257). The preliminary results of this
study on a single patient reported glioma regression, but
development of therapy resistance associated to the emergence of
(IL-13Ra2) negative cells. Additionally, histone K27M-mutant cells
show consistent expression of GD2, and its CAR-T-mediated
targeting was efficient in K27M xerograph models (258). These
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studies provide the foundation on future directions to develop
efficient immunotherapies for glioma. CAR-T cell therapies. The
identification of multiple cell surface markers with minimal off-
target effects for the different molecular subtypes of gliomas is
essential to target tumors and prevent antigen escape-associated
resistance. In this regard, the recent genomic analysis of gliomas has
led to the identification of clonal mutations that drive the different
molecular subtypes. For example, IDH1/2 mutations in adult
gliomas and histone H3.1 and H3.3 mutations in pediatric high
grade gliomas were shown to be clonal for their respective subtypes,
and developing therapies targeting these genetic alterations would
reduce the risk of antigen-escape.

The epigenetic alterations induced by driver mutations such
as those in IDH1/2 and H3.1 and H3.3 histones may also induce
DNA repair deficiencies and/or genetic instability, and this can
be associated with more immune reactive tumors. For example,
cells more susceptible to DNA damage, such as H3.3-G34R
mutant cells (259), undergo immunogenic cell death (ICD)
upon DNA damaging conditions, which can revert the
immune-suppressive TME. For this reason, acknowledging the
susceptibility of the different glioma molecular subtypes to
different treatments to induce ICD. For example, HDAC
inhibitors were shown to target K27M HGG (260), and other
tailored therapies are being explored for other subtypes (252),
but the potential combinations of treatments inducing ICD and
immunotherapies remain unexplored.

In summary, it is clear that the genetic alterations present in
the different glioma molecular subtypes are determinant of the
efficacy of immunotherapies possibilities and responses, and that
the evolving information of each glioma subtype will provide
opportunities for novel tailored immunotherapies.
NOVEL TARGETS AND STRATEGIES TO
STIMULATE ANTI-GLIOMA IMMUNE
RESPONSE

In this section, we aim to discuss about the latest glioma targets
and anti-tumor strategies being studied in the pre-clinical
setting (Figure 1).

Fyn Inhibition as a Target to Enhance
Immune Response and Prevent
Tumor Progression
Despite current advances in the molecular characterization of
gliomas and novel therapies to target the tumor immune
microenvironment, treatment of glioblastoma remains elusive (34,
261). Latest studies indicate that glioma infiltrating myeloid cells
inhibit the anti-glioma immunity and enhance tumor progression
and thus, the identification of the connections between tumor cells
and the tumor immune suppressive microenvironment could open
innovative treatment options (9, 262). Fyn, a non-receptor tyrosine
kinase member of the Src family kinases (SFK), has recently
emerged as a novel regulator of the tumor immune
microenvironment during glioma development (20, 248). Fyn
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regulates several cellular functions in normal physiology and is
deregulated in different cancers (263–265). It has been shown that
Fyn displays important functions related to the immune system
modulation, regulating the activity of T cells (266, 267); and in the
development of the CNS, regulating the migration and adhesion of
neurons (268, 269). Previous studies on Fyn’s role in cancer,
including glioma, show that Fyn is activated via NRAS dependent
and independent pathways through the oncogenic receptors EGFR,
PDGFR, HGF/MET or RTK/RAS/PI3K to increase cell migration,
proliferation and reduce cell death (270–272). These growth factor
receptors are the most common mutated driver genes in GBM
tumorigenesis (34, 261). Even though Fyn is mutated in a very low
percentage of human gliomas (0.1-0.4 %), it has been shown that it
is overexpressed in higher grade mouse and human gliomas
(20, 270).

Until recently, Fyn has been best known by its cell-
autonomous functions. The majority of in vitro studies showed
that pharmacological inhibition and genetic downregulation of
Fyn in glioma cells decreased cell proliferation and migration
(265, 270, 273, 274). However, in vivo studies had been
inconclusive (275). Recently, Comba et al. demonstrated not
only the effects of Fyn in increasing glioma cell proliferation and
migration, but also an unusual cell-non-autonomous role of Fyn
inhibiting the anti-glioma immune response (20). RNA-Seq and
network bioinformatic analysis of the tumor transcriptomic
landscape on glioma mouse model tumors indicated that Fyn’s
biological effects were related to the immune microenvironment.
Using diverse genetically engineered immune-competent mouse
glioma models, the study shows that genetic downregulation of
Fyn increases survival and decreases glioma growth and
progression. Interestingly, Fyn knockdown tumors generated in
immune deficient mice (NSG, CD4-/- and CD8-/-) exhibited no
differential effects on tumor growth and survival, demonstrating
the relevance of the immune response in the progression of these
tumors. The mechanistic analysis showed that Fyn depletion
reduces the expansion of the immune suppressive myeloid cells
(MDSCs) in the TME, including monocytic-MDSCs (CD45+,
CD11b+, Ly6Chi, Ly6G−) or polimorphonuclear-MDSCs (CD45+,
CD11b+, Ly6Clo, Ly6G+) and therefore less inhibition of T-cell
activity is observed. Fyn increases tumor growth due to MDSC
migration induction, their augmented expression of ARG1 and
CD80, as well as their enhanced functional immunosuppressive
activity (20). This work opens up new avenues for future
investigations to understand glioma-immune microenvironment
cross-talk and increases the potential efficacy of anti-glioma
therapeutics. All these data suggest that Fyn inhibition in tumor
cells is a novel therapeutic target for glioma treatment. Inhibiting
Fyn’s pro-tumoral activity has the combined effects of reducing
tumor cell proliferation and migration, as well as inducing the anti-
tumor immune response.

The incapacity of different therapeutic agents to cross the
blood-brain barrier and the non-specificity of the available Fyn
pharmacological inhibitors challenge the possibilities of its use as
a target for glioma treatment (265). To investigate the
translational implications of targeting Fyn in glioma, we
propose the use of glioma pre-clinical models to test the
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efficacy of nanoparticles loaded with small interfering RNA
(siRNA) against Fyn. This strategy has the advantage of being
systemically administrated, since nanoparticles have the ability
to cross the brain-barrier and deliver their cargo directly into
brain tumors (276, 277). Furthermore, the combination of Fyn
inhibition within glioma cells and cancer immunotherapy, such
as immune checkpoint blockade (PDL1 and PD1 inhibitors),
IFNg therapy, and Ad-hCMV-TK plus Ad-hCMV-Flt3L
immune-stimulatory gene therapy (8, 12, 278), are promising
avenues to improve the efficacy of anti-glioma immunotherapies
and explore novel personalized treatment for glioma patients.

Nanoparticles as a Novel Anti-Glioma
Therapy to Stimulate the Immune System
Nanotechnology is a potentially promising strategy to utilize
against gliomas. It offers advantages such as (1) targeted delivery
of materials to specific organs and tissues; (2) antigen and
adjuvant co-delivery to antigen-presenting cells (APCs); and
(3) non-invasive delivery of therapeutics; while (4) providing
safe and biocompatible platforms for combinational
immunotherapy, especially with immune checkpoint blockade
(ICB) (279). In particular, Kuai, et al. have developed a synthetic
high-density lipoprotein (sHDL) nanodisc platform composed of
phospholipids and apolipoprotein A1-mimetic peptides (280).
As a platform for cancer immunotherapy, sHDL has ideal
properties, including multiple cargo loading sites for antigens,
adjuvants, and chemotherapeutics, and its small size (10 nm)
mediates efficient delivery of cargo to draining lymph nodes or
directly to tumors for cytotoxic effects. In this regard, we have
demonstrated strong anti-tumor efficacy of sHDL delivering
GBM neoantigens or a chemotherapeutic agent docetaxel
(DTX) in murine models of glioma (21, 22).

The sHDL nanodiscs using GBM neoantigens were synthesized
by modifying neoantigen peptides with a reduction-sensitive
cysteine-serine-serine linker, which was reacted with a dioleoyl-
sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)
propionate] (PDP)-modified lipid to produce neoantigen-lipid
conjugates (22, 280). Loading of neoantigen-lipid conjugates and
CpG (a Toll-like receptor-9 agonist) in sHDL was mediated via
hydrophobic interactions after simplemixing. Nanodiscs were taken
up by DCs, leading to strong localization with endosomes/
lysosomes, sustained epitope-MHC I presentation, and cross-
priming of CD8+ T cells against GBM. Mice were inoculated
with an orthotopic GL261 model and treated with a combination
of nanodiscs carrying three GBM neoantigens and anti-PD-L1. The
results showed up to 100-fold higher IFNg+ T cell responses and
eradicated 30% of gliomas, compared with soluble vaccine + anti-
PD-L1 treatment (22). Furthermore, there were no signs of
recurrence through day 90, on which mice were re-challenged in
the contralateral hemisphere and did not show any signs of
neurological deficit as well (22). These results are particularly
exciting as they demonstrate immunological memory and the
ability of glioma-specific T cells to traverse the blood brain barrier
(BBB) and exert cytotoxic effects against gliomas.

Nanodiscs carrying DTX and CpG were synthesized similarly
(21). One of the main barriers of effective glioma treatment is the
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BBB, which provides a physical resistance to GBM
chemotherapeutic treatment. By loading sHDL nanodiscs with
DTX and CpG and injecting them intrathecally, the BBB was
bypassed, allowing the nanodiscs to diffuse through the entire
tumor (21, 281). When sHDL-DTX-CpG was administered to
orthotopic GL26 tumor-bearing mice, a ~2-fold increase in
survival was observed, compared with DTX, DTX-CpG, or DTX-
sHDL treatment (21). sHDL-DTX-CpG triggered immunogenic cell
death, as evidenced by high expression of “eat me” and “danger”
signals, such as calreticulin and HMGB1 on the surface of tumor
cells. sHDL-DTX-CpG also promoted recruitment of APCs as well
as CD8+ T cells into GBM tumors (21). As standard therapy for
GBM is normally a combination of radiation therapy and
chemotherapy, GBM-bearing mice were treated with a
combination of sHDL-DTX-CpG and radiation therapy, which
resulted in 80% tumor regression and no tumor recurrence post
tumor re-challenge (21). Exemplified by these two examples using
the sHDL nanodisc platform, nanotechnology is a novel and
effective therapy to stimulate a comprehensive anti-GBM
immune response.

Current Therapies Aimed at Targeting
Epigenetic Pathways in Glioma and Its
Impact on the Immune Response
Insights into the molecular landscape of diffuse gliomas have
revealed characteristic genetic and epigenetic profiles which
stratified the glioma classification (38, 47). Genetic anomalies
associated with gliomagenesis commonly coincide with specific
epigenetic mutations (282). These include but are not limited to a
mutation in histone H3 genes such as H3K27M, and H3G34R/V as
well as a mutation in the epigenetic modulator gene isocitrate
dehydrogenase (IDH) (38, 47). Owing to the reversibility of
epigenetic modifications, the proteins and genes that regulate
these changes have become new targets in the treatment of
glioma (282). Epigenetic mechanisms are critical for many
processes in cancer–immunity cycle. Also, epigenetic pathways
can impact both tumor cells as well as immune cells resulting in a
negative impact on the anti-tumor immune response. For instance,
DNA methylation-associated mutagenesis is the single most
important source of genetic alterations, leading to neoantigen
formation in most cancers including glioma (283, 284).

Several therapies aimed at targeting epigenetic pathways are
being examined for their anti-glioma abilities. Several of these
therapies target proteins that mediate histone modifications.
Examples of these therapies include EZH2 inhibitors, DNA
methyltransferase (DNMT) inhibitors, histone deacetylase
(HDAC) inhibitors, mutant IDH inhibitors, and BET inhibitors
(285). The enhancer of zeste homolog 1/2 (EZH1/2) is the main
subunit of PRC2 responsible for the trimethylation of Histone H3
lysine 27 (H3K27me3), which controls stem cell and oncogenic gene
expression programs (282). The H3K27 mutation has been shown
to inhibit polycomb repressor complex 2 (PRC2) activity which
leads to hypomethylation of H3K27 and expression of potential
oncogenes (282). EZH2 overexpression is associated with poor
GBM prognosis, and reducing levels of EZH2 expression in vivo
resulted in a reduced tumor progression, which suggests the efficacy
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of EZH2 inhibitors as anti-glioma therapies (286, 287). EZH2
inhibitor, Tazemetostat, alone, and in conjunction with other
therapies, is currently in clinical trials for treating pediatric glioma
wi th EZH2 , SMARCB1 , or SMARCA4 muta t ions
(ClinicalTrials.gov IDs NCT03213665, NCT03155620). These
mutations affect gene expression via the regulation of
chromatin remodeling.

DNA methylation is the most commonly studied epigenetic
modification in cancer (285), and methylation signatures are
included in glioma classification (288). Gliomas harboring mutant
IDH1 display high levels of DNA hypermethylation in CpG rich
domains, which are associated with increased tumor progression
and altered gene expression (289, 290). Inhibitors of mutated IDH1/
2 enzymes entered clinical trials and represent a novel drug class for
targeted therapy of gliomas. These include AG-881, AG-120, and
AG-221, all of which are being tested in preclinical and clinical
settings. Preliminary results from Phase I clinical trials with IDH
inhibitors demonstrated an objective response rate ranging from
31% to 40% with durable responses (>1 year) (291). To date, AG-
120 showed the most clinically promising results as an orally
administered, reversible, and highly selective small-molecule
inhibitor of mutant IDH1/R132H cancers (292, 293).

Another group of drugs targeting the glioma methylation status
are DNMT inhibitors, which are now being studied as potential
anti-mIDH1 glioma therapies. DNMTs promote cancer generation
by causing hypermethylation of tumor suppressor gene enhancers
and promoter regions (18, 285). Early studies have shown anti-
glioma efficacy of DNMT inhibitors in vivo and in vitro (294, 295).
Despite the preclinical successes, a representative DNMT inhibitor,
5-aza-2′-deoxycytidine, has been shown to have minimal efficacy in
early clinical trials (290). Recent studies showed a strong connection
between epigenetics and cytokine production in tumor cells. One
example is DNMT inhibition which can trick cancer cells into
behaving as virus-infected cells, leading to activation of the
interferon pathway (296, 297). In glioma, IL-6 promotes
hypermethylation of the Sp1-binding site in the miR142-3p gene
promoter, preventing binding of Sp1 and inhibiting miR-142-3p
expression (298). These changes were shown to enhance the
effectiveness of immune checkpoint inhibitors (296, 297).
Moreover, multiple studies have shown that the PD-L1 level can
be regulated by epigenetic mechanisms. For example, in IDH1
mutated glioma, we have shown that methylation in PD-L1
promoter negatively correlates with PD-L1 expression and
prognosis (24).

Histone acetylation plays a role in gene expression. Whilst
acetylation is generally associated with elevated transcription,
deacetylated histones are generally associated with repressed genes
(299). HDAC enzymes are differentially expressed in glioma and
have been shown to play a role in glioma progression (18, 299).
Several pre-clinical studies have shown an effective response for
HDAC inhibitors via multiple mechanisms, including induction of
tumor cell death, as well as increase radio-sensitivity, differentiation,
and/or cell cycle arrest (300–302). Due to the promising results
obtained from these studies, both Vorinostat and valproic acid, are
currently being tested in clinical trials on gliomas as monotherapies
and combinational therapies (18, 303–305). So far, results showed
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that HDAC inhibitor monotherapies are not sufficient as anti-
glioma therapies, but they show promise in increasing the anti-
glioma effects in combinational therapies (306).

Bromodomain and extra-terminal domain (BET) proteins are
epigenetic chromatin readers that bind to acetyl marks of lysine
residues to regulate gene expression (282, 285, 307). BET proteins
were found to be associated with high expression of oncogenes (285,
307). BET inhibitors have been identified as possible therapies for
GBM patients, as they have been found to inhibit GBM cell
proliferation both in vivo and in vitro by hindering cell cycle
progression and reducing oncogene expression (307, 308). Despite
the promising preclinical findings, there are no clinical trials on BET
inhibitors as a treatment for glioma patients.

Multiple therapeutics targeting epigenetic pathways (epidrugs)
have been approved for cancer treatment which can affect the
immune response. These were approved to treat hematopoietic
malignancies such as T-cell lymphoma, multiple myeloma, and
myelodysplastic syndromes (309, 310). Even though there is no
clinical application of epidrugs targeting glioma, azemetostat, a
KMT6A (EZH2) inhibitor, was approved for the treatment of
epithelioid sarcoma, making it the first approved histone ‘writer’
inhibitor and the first epidrug to treat solid tumors (311). This
demonstrates promising avenues of epidrugs to target solid tumors
that have pronounced epigenetic dysregulation including glioma,
which could in turn, enhance the immune response against
these tumors.

Inhibition of the Oncometabolite (R)-2-HG
to Enhance Anti-Glioma Immunity
Mutation in the metabolic enzyme isocitrate dehydrogenase 1
(mIDH1) at active site residue R132H occur in ~20-25% of
infiltrative gliomas (40, 312, 313). The mutation leads to gain-of-
function catalytic activity that converts a-ketoglutarate (aKG) to
the onco-metabolite (R)-2-hydroxyglutarate ((R)-2-HG) (40, 314,
315). (R)-2-HG competitively inhibits histone demethylating
enzymes ten-eleven translocation methylcytosine dioxygenases
(TETs) and lysine-specific demethylases (KDMs) (289, 316).
Inhibiting demethylation increases DNA and histone methylation,
altering the epigenome, resulting in changes in the tumor
transcriptome (289, 316). Although studies have shown that small
molecule inhibitors targeting IDH1-R132H have been effective in
impairing tumor progression as monotherapy in pre-clinical models
(317), in phase I clinical trials they have not been effective as
monotherapies (NCT02381886). We have previously shown that
mIDH-R132H, in the context of ATRX and TP53 inactivation,
epigenetically reprograms gene regions corresponding to DNA
repair proteins in human and murine glioma cell cultures (44).
Treatment with AGI-5918, a small molecule inhibitor prior to
radiotherapy, downregulated DNA repair gene expression, thus
making the tumor cells radiosensitive. These results highlight the
need for a combinatorial treatment strategy to effectively impede
mIDH1 progression.

The onco-metabolite (R)-2-HG has been shown to repress
expression of key immune regulatory genes, such as CCL2,
CXCL-2 and C5-a, which are primarily involved in mediating
lymphocytes’ trafficking to the mIDH1 glioma TME (94).
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Recently, one study demonstrated that combination of PD-1
inhibition and the mIDH1 inhibitor BAY1436032 extended the
survival of mice implanted with GL261-IDH1R132H glioma cells
by overriding the immune suppressive environment mediated by
(R)-2-HG (318).

We recently demonstrated that in genetically engineeredmIDH1
mouse gliomas, resembling human mutant IDH1 astrocytoma, (R)-
2-HG inhibition in combination with SOC increased the infiltration
of DCs and anti-tumor specific T cells in the TME, while decreasing
the infiltration of immunosuppressive MDSCs, Tregs, and M2
macrophages compared to saline treated mice (24). We also
observed that mIDH1 glioma cells exhibit lower levels of PD-L1
expression (24). In response to (R)-2-HG inhibition, PD-L1
expression levels on mIDH1 glioma cells significantly increased to
those observed in wild type IDH gliomas (24). Numerous preclinical
solid tumormodels have demonstrated that the immune checkpoint
blockade of PD-1/PD-L1 interaction prevents T cell exhaustion,
resulting in enhanced anti-tumor immune activity and improved
MS (9, 319, 320). We previously demonstrated that PD-L1
checkpoint blockade as monotherapy elicited a small increase in
MS in mice bearing syngeneic glioma, with only a few long-term
survivors (9). However, immune-checkpoint blockade used as
monotherapy has failed in Phase III clinical trials to improve OS
of patients with glioma (12). We observed that IDH1-R132H
inhibition used in combination with SOC and anti-PD-L1
immune checkpoint blockade increased the frequency of tumor-
specific cytotoxic CD8+ T cells and IFN-g release within the TME
(24). Strikingly, long-term survivors from IDH1-R132H inhibition
in combination with SOC and anti-PD-L1 immune checkpoint
treatment group remained tumor-free post mIDH1 glioma
rechallenging in the contralateral hemisphere, indicating the
development of anti-mIDH1 glioma immunological memory (24).
This is a critical factor in determining the success of immune-
therapeutic approaches in gliomas. A robust anti-tumor T cell
response and the presence of anti-glioma immunological memory
are required to eradicate any remnant tumor cells post-surgery and
prevent recurrence.

Collectively, upon metabolic reprogramming it is possible to
achieve anti-mIDH1 glioma immunity. The precise elucidation of
the immune pathways affected by (R)-2-HG will lead to an
understanding of the underlying biological processes and will
provide better therapeutic approaches for mIDH1 glioma patients.
FUTURE PROSPECTS AND
CONCLUSIONS

The path for immunotherapies against glioma has started more
than a decade ago and the lack of sustained clinical beneficial
outcomes demonstrates the challenge that this tumor represents
(12, 17, 79, 84, 249). Malignant gliomas are tumors intrinsically
difficult to target by immunotherapies due to their heterogeneity,
their immunosuppressive TME and the particular cross-talk of
the CNS and the immune system (6, 11). However, as tumor
recurrence occurs almost always in glioma patients, since these
tumors are virtually impossible to completely resect due to their
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infiltrative nature, anti-glioma immunological memory would be
highly beneficial desirable for these patients. Also, because the
immunosuppressive TME is related to glioma aggressiveness,
trying to counteract this milieu represents an appealing idea for
oncologists and researchers.

Research in immunotherapies against glioma developed in
parallel with the broadening of our understanding regarding the
molecular landscape associated to different types of glioma.
These studies demonstrated that entities before defined under
the same WHO group, were not as homogeneous as they were
thought to be (38, 40, 321). The genetic and epigenetic data
gathered so far enabled the classification of gliomas in terms of
their intrinsic characteristics, in combination with the
histological features, and unveiled how complex these tumors
are. Also, with the advent of state-of-the-art technologies, such as
scRNA-Seq, it was realized not only that gliomas have intra-
tumor heterogeneity, but also, that this state could fluctuate, for
example, depending on the stage of the treatment at which the
biopsy is taken. Ideally, in the future, the advancements in both,
sequencing methodologies and immunotherapeutic strategies,
will be combined to design and apply more targeted therapies
for glioma patients (Figure 2).

This overwhelming amount of information allowed the
development of more sophisticated murine models for the pre-
clinical testing of immune-mediated therapies for glioma. Mouse
models that recapitulate the human disease, with animals
harboring brain tumors encoding for the specific genetic and
epigenetic alterations described, have been generated with
techniques, such as the Sleeping Beauty method, that enable
the concomitant study of the surrounding immune response.

Even though these advancements represented a milestone in the
exploration of immunotherapies against glioma, the translation of
pre-clinical findings to the clinical setting has not yielded consistent
or sustained beneficial outcomes for patients. This drawback reveals
that animal models need to be further adjusted to the genetics/
biology of these tumors and that we should be cautious about
generalizing the potential clinical response for a particular immune-
mediated therapy. So far, the data gathered from clinical trials and
the information obtained in pre-clinical models have been useful in
demonstrating that the molecular features of glioma influence the
anti-tumor immune response and the clinical consequences of the
administration of an immunotherapy.

Despite the lack of a substantial benefit for glioma patients
treated with immunotherapies, the medical-research community
has learnt important lessons from these pitfalls. Currently, we
know that the immune-mediated approach to treat glioma
should be combinational, not only by considering more than
one TAA or TSA to target, but also by integrating different
immunotherapeutic strategies. For example, DC vaccines could
be combined with ICI and OV therapy, to enhance the
development of adaptive anti-tumor immunity. The possibility
of combinational therapies is encouraging, as we have been
capable of developing different immune-mediated strategies
against this tumor. However, it rises the complexity of tumor
treatment, as the number of combinations for drug doses, times
and routes for drug administration increases exponentially.
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The great advancements in the immune-mediated approaches for
glioma therapy and the development of BBB penetrating and tumor-
targeted ways of drug administration in the pre-clinical setting has
demonstrated that the research community is capable of designing
new alternatives to overcome the challenges that this type of tumor
presents. We believe that the key for the success of immunotherapies
against glioma resides in the deep understanding of the biology of this
tumor and in the precise combination of diverse therapeutic
approaches. It is important to carefully revise the clinical trial
results and to compare them with the pre-clinical data, in order to
learn from the failures and generate better animal models.

We hope that the data discussed in this review highlight the
importance of taking into account the molecular features of
gliomas when considering immunotherapies and that it will shed
light on the aspects that we still need to tackle to successfully
harness the immune system against these tumors.
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