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Angiogenesis, which is morphogenesis undertaken by endothelial cells (ECs) during new blood vessel formation,
has been traditionally studied on natural extracellular matrix proteins. In this work, we aimed to regulate and
guide angiogenesis on synthetic, bioactive poly(ethylene glycol)-diacrylate (PEGDA) hydrogels. PEGDA hydrogel
is intrinsically cell nonadhesive and highly resistant to protein adsorption, allowing a high degree of control over
presentation of ligands for cell adhesion and signaling. Since these materials are photopolymerizable, a variety of
photolithographic technologies may be applied to spatially control presentation of bioactive ligands. To manip-
ulate EC adhesion, migration, and tubulogenesis, the surface of PEGDA hydrogels was micropatterned with a cell
adhesive ligand, Arg-Gly-Asp-Ser (RGDS), in desired concentrations and geometries. ECs cultured on these RGDS
patterns reorganized their cell bodies into cord-like structures on 50-mm-wide stripes, but not on wider stripes,
suggesting that EC morphogenesis can be regulated by geometrical cues. The cords formed by ECs were remi-
niscent of capillaries with cells participating in the self-assembly and reorganization into multicellular structures.
Further, endothelial cord formation was stimulated on intermediate concentration of RGDS at 20 mg=cm2, whereas
it was inhibited at higher concentrations. This work has shown that angiogenic responses can be tightly regulated
and guided by micropatterning of bioactive ligands and also demonstrated great potentials of micropatterned
PEGDA hydrogels for various applications in tissue engineering, where vascularization prior to implantation is
critical.

Introduction

The formation of blood vessels is essential for estab-
lishment and maintenance of tissues. Angiogenesis refers

to the formation of new capillary blood vessels by a process of
sprouting from preexisting vessels and is often studied in vitro
by stimulating monolayers of endothelial cells (ECs) to as-
semble into sprouts or tubes.1 This complex process of new
blood vessel formation is orchestrated by interplay between
ECs and their neighboring mural cells via various cytokines,
extracellular matrix (ECM) proteins, integrins, and proteases.2

Ever since the introduction of the in vitro model of angio-
genesis,3 there have been great research interest to understand
the intricate process of angiogenesis; however, the details of
conditions that govern angiogenesis are yet to be delineated.

Natural ECMs have been used widely in blood vessel bi-
ology research due to their ease of preparation and manipu-
lation. For examination of angiogenesis on two-dimensional
(2D) surfaces, Matrigel is frequently used to coat tissue culture
plates, and ECs are plated in the presence of angiogenic or
antiangiogenic molecules.4,5 With appropriate angiogenic

molecules, ECs organize into thin cords and eventually as-
semble into honeycomb-like structures within 4–8 h.6 How-
ever, since Matrigel is composed of multiple ECM proteins
and growth factors, it is difficult to delineate the specific in-
teractions that stimulate angiogenesis. In more defined stud-
ies, individual ECM proteins were studied for their effects on
angiogenesis. Capillary ECs were cultured on culture dishes
precoated with varying concentrations of fibronectin, and cell
spreading and growth were either stimulated or inhibited on
highly adhesive (>500 ng=cm2) and nonadhesive (<100 ng=
cm2) ECM substrate, respectively.3,7 Interestingly, interme-
diate fibronectin coating densities (100–500 ng=cm2) promoted
formation of EC tube networks within 1–2 days.

The density and geometry of ECM-coated substrate can be
controlled more precisely with the various micropatterning
techniques available. In particular, microcontact printing was
utilized by several groups to study the effect of geometrical
distribution of ECM proteins on morphogenesis of ECs into
tubular structures.8,9 In this technique,10,11 poly(dimethyl
siloxane) stamps were fabricated by casting the prepolymer
against relief patterns, and the stamps were dipped into
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solution with thiol-containing moieties. The stamps were then
brought into conformal contact with a gold substrate, leaving
the thiol moieties in patterns. In one study, microcontact
printing of self-assembled monolayers of alkanethiolates was
used to form islands of fibronectin with various geometries on
gold, and ECs formed tubular structures on 10-mm-wide lines
of fibronectin.8,9,12 In another study, chitosan and gelatin were
micropatterned via the microcontact printing method, and
ECs similarly underwent capillary morphogenesis on 20-mm
lines of gelatin.12 These studies have demonstrated that the
creation of a well-defined substrate by micropatterning can
provide a useful tool for investigating the progress of angio-
genesis. Although these studies employed micropatterning
techniques to successfully isolate and study geometrical cues
of the ECM, their systems were still confounded with various
biochemical cues present in the ECM proteins, which partic-
ipate in rather complex cellular interactions as these proteins
present cells with multiple cell binding, growth factor bind-
ing, as well as cryptic domains.13,14 Therefore, a more con-
trolled system is required to isolate the geometrical cues from
the biochemical cues of the ECM proteins.

Instead of using the mixture of ECM proteins or their
individual components as discussed above, this current work
utilized Arg-Gly-Asp-Ser (RGDS) incorporated into poly
(ethylene glycol) diacrylate (PEGDA) hydrogels as the most
basic substrate upon which blood vessel formation by ECs is
studied. The hydrophilic and highly mobile backbone, PEG,
resists nonspecific protein adsorption and cell adhesion.15 On
this nonadhesive surface, specific bioactive factors can be
systemically added with precise control over both concen-
tration and geometry to induce favorable cellular interactions.
It has been previously reported that PEGDA hydrogels
modified with various cell adhesive ligands support cell
adhesion, proliferation, and migration of many different cell
types.15–18 Two-dimensional and three-dimensional (3D)
micropatterning of these ligands in hydrogels also has been
performed by photolithographic techniques to guide cell
adhesion and migration.19–22

This work demonstrates a new application of synthetic,
biomimetic PEGDA hydrogels as a biocompatible and bio-
active substrate for induction and regulation of blood vessel
formation. PEGDA hydrogels were micropatterned with
RGDS in various densities and geometries via photolitho-
graphic technique, and EC morphogenesis into rudimentary
capillary-like structures was induced and guided on these
materials.

Materials and Methods

Cell maintenance

Human umbilical vein endothelial cells (HUVECs) were
obtained from Cambrex (East Rutherford, NJ) and were
grown on EC medium EGM-2 (Cambrex) supplemented with
2 mM L-glutamine, 1000 U=mL penicillin, and 100 mg=L
streptomycin (Sigma, St. Louis, MO). Cells were incubated at
378C in a 5% carbon dioxide environment. All experiments
were conducted using cells from passages 3 to 8.

Synthesis of PEGDA

PEGDA was synthesized as described previously.15 Briefly,
12 g dry PEG (6000 Da; Fluka, Milwaukee, WI) in 36 mL

anhydrous dichloromethane was reacted with 0.25 g triethy-
lamine and 0.43 g acryloyl chloride (Lancaster Synthesis,
Windham, NH) under argon overnight. The resulting solution
was washed with 2 M K2CO3 and separated into aqueous and
organic phases. The organic phase was dried with anhydrous
MgSO4, and PEGDA was precipitated in diethyl ether, fil-
tered, and dried under vacuum. The resulting product was
analyzed by 1H-NMR (Advance 400; Bruker, Hanau, Ger-
many) with D2O as a solvent.

Synthesis of PEG derivatives

The cell adhesive ligand, RGDS (American Peptide, Sun-
nyvale, CA), was conjugated to PEG monoacrylate by reaction
with acrylate-PEG-N-hydroxysuccinimide (PEG-NHS, 3400
Da; Nektar, Huntsville, AL) in 1:1 molar ratio in 50 mM so-
dium bicarbonate buffer (pH 8.5) for 2 h at room temperature.
The resultant product, PEG-RGDS, was dialyzed, lyophilized,
and stored at �808C. Horseradish peroxidase (HRP) (Sigma)
was similarly reacted with PEG-NHS and subsequently with
fluorescein-5-isothiocyanate (FITC) (Invitrogen, Carlsbad,
CA) in 1:10 molar ratio for 1 h at room temperature. The re-
sultant product, PEG-HRP-FITC, was used to aid in visuali-
zation of the surface-patterned areas on the hydrogels. A gel
permeation chromatography system equipped with ultravio-
let (UV)-vis and evaporative light scattering detectors (GPC;
Polymer Laboratories, Amherst, MA) was used to confirm
PEG conjugation to RGDS.

Surface patterning of PEGDA hydrogels

Single or multiple bioactive molecules have been im-
mobilized on the surface of PEGDA hydrogels with great
fidelity using photolithographic techniques, and the amount
bound has been shown to be precisely controlled by their
initial concentration in the prepolymer solution or the dura-
tion of exposure of the UV lamp during photopolymeriza-
tion.20 Surface patterning on PEGDA hydrogels involved
two successive photopolymerization steps. First, base cell-
nonadhesive PEGDA hydrogels were prepared by pouring
0.1 g=mL PEGDA in 10 mM HEPES-buffered saline (pH 7.4)
into rectangular glass molds (0.5-mm thickness), and expos-
ing the polymer solution to long-wavelength UV light
(365 nm, 10 mW=cm2) for 30 s. After rinsing the hydrogels
with phosphate-buffered saline (PBS; pH 7.4), the surfaces of
the hydrogels were covered evenly with 50mL of a second
polymer solution containing various concentrations of PEG-
RGDS in 10 mM HEPES-buffered saline (pH 7.4).

The thin layer of prepolymer solution was covered using
transparency masks with desired patterns, which were pre-
pared using Illustrator and a standard laser jet printer
(LaserWriter 16=600 PS; Apple Computers, Cupertino, CA).
Subsequent second exposure to UV light for 1 min allowed
conjugation of acrylated PEG-RGDS to unreacted acrylates on
the hydrogels, forming a covalently bound layer of PEG-
RGDS in patterns on the surface of the base PEGDA hydro-
gels. The surface PEG-RGDS concentrations reported in this
study were calculated from the amount of PEG-RGDS applied
on the surface of PEGDA hydrogels.

To visualize the patterned areas on the hydrogels, PEG-
HRP-FITC was used instead of PEG-RGDS and examined
with an epi-fluorescence microscope (Axiovert 135; Carl Zeiss,
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Thornwood, NY). All polymer solutions contained 10mL=mL
of 2,2-dimethyl-2-phenyl-acetophenone in N-vinylpyrrolidone
(300 mg=mL) as a photoinitiator. Unbound peptides were
rinsed from the hydrogels during 2-h incubation in EGM-2
media. Finally, the hydrogels were cut into discs with 2.0-cm
diameter and placed in 24-well plates.

HUVEC adhesion on PEGDA hydrogels

Cell adhesion was evaluated on the surface of PEGDA
hydrogels patterned with various concentrations of PEG-
RGDS. Hydrogel samples were prepared with PEG-RGDS
concentrations of 2, 4, 20, and 100mg=cm2 patterned into 50-
mm-wide stripes. HUVECs (45,000 cells=cm2) were plated,
and after 1 day in culture, nonadherent cells were removed
with a PBS wash. Cells were photographed with a digital
camera (Nikon, Melville, NY) mounted on a phase contrast
microscope (Axiovert 135; Carl Zeiss). The adherent cells on
each hydrogel were trypsinized, and the cell number was
measured using a Coulter counter (Coulter, Fullerton, CA).

Tube formation and visualization

To examine the effect of patterned RGDS concentration on
EC cord formation, HUVECs (45,000 cells=cm2) were seeded
on PEGDA hydrogel surface patterned with 50-mm-wide
stripes of PEG-RGDS at various concentrations, ranging from
2 to 100 mg=cm2. HUVECs cultured for 2 days on the patterned
stripes were fixed in 3.7% formaldehyde in PBS for 15 min,
followed by permeabilization with 0.5% Triton X-100 in PBS
for 10 min. The specimens were blocked with 3% bovine se-
rum albumin (BSA; Sigma) in PBS for 30 min, and actin and
nuclei were stained with tetramethyl rhodamine isothiocya-
nate (TRITC)-conjugated phalloidin (5 U=mL; Sigma) for 1 h
and 4’,6-diamidino-2-phenylindole (DAPI) (300 nM; Invitro-
gen) for 5 min. Confocal imaging was performed on a Zeiss
LSM 510 META system (Carl Zeiss).

To investigate the effect of patterned geometry on EC cord
formation, HUVECs (45,000 cells=cm2) were seeded on PEG-
DA hydrogels with surface-patterned PEG-RGDS (20mg=cm2)
on stripes with width ranging from 50 to 200mm. On days 1
and 18 after cell seeding, random areas in each sample were
photographed to visualize changes in cell morphology before
and after EC cord formation. Expression patterns of ECM
proteins were also visualized with immunofluorescence stain-
ing. The specimens were fixed, permeabilized, and blocked as
described previously, and they were incubated with primary
antibodies against fibronectin, laminin, or collagen type I
(diluted to 1:25 with 3% BSA in PBS; Sigma) for 2 h and with
a secondary antibody conjugated to Alexa fluor 488 (diluted
to 1:1000 in 3% BSA in PBS; Invitrogen) for 1 h. The speci-
mens were visualized with an epi-fluorescence microscope
(Axiovert 135; Carl Zeiss).

Statistical analysis

Statistical analysis was performed with Jmp 5.1 (SAS In-
stitute, Cary, NC). Data sets were analyzed using one-way
analysis of variance (ANOVA), followed by Tukey’s honestly
significant difference (HSD) test for multiple comparisons.
p-values less than 0.05 were considered statistically signifi-
cant. All values are reported as mean� standard deviation.

Results

Surface patterning of PEGDA hydrogels

A surface patterning technique to immobilize peptides on
PEGDA hydrogels using photolithography was recently de-
veloped, and various geometries have been patterned onto
hydrogel surfaces.20 In this current work, straight lines with
varying widths were patterned with bioactive molecules in
order to promote EC cord formation on PEGDA hydrogels.
Clear transparencies were laser printed with stripes leaving
50- and 200-mm-wide blank lines (Fig. 1A). To aid in visuali-
zation, PEG conjugated to FITC was applied on the surface of
hydrogel, and the acrylate moieties were immobilized selec-
tively on specific regions by applying UV light through the
transparency for 1 min. After 2 h of washing, FITC-bound
stripes with width corresponding to the original patterns were
observed, confirming the successful surface patterning on the
hydrogels (Fig. 1B).

In order to demonstrate feasibility of guiding HUVEC
adhesion on hydrogels with micropatterned RGDS, the hy-
drogels were surface patterned with high enough concentra-
tion of PEG-RGDS to allow cell adhesion. PEG-RGDS of
300mg=cm2 was applied on the cell-nonadhesive PEGDA
hydrogels and exposed to a UV source through the trans-
parency masks. The resulting PEGDA hydrogels were seeded
with HUVECs, and after 1 day in culture, the cells were found
to adhere and spread only on 50- and 200-mm-wide stripes
immobilized with PEG-RGDS, but not on bare PEGDA
regions (Fig. 1C).

HUVEC adhesion on various concentrations of RGDS

In order to optimize the hydrogel culture system for
HUVEC adhesion and cord formation, various concentrations
of PEG-RGDS were patterned onto 50-mm-wide stripes, and
HUVEC adhesion was assessed after 1 day of seeding (Fig. 2).
On 50-mm-wide stripes patterned with 2.0 mg=cm2 of PEG-
RGDS, there was minimal cell adhesion as the cells failed to
attach or spread on the hydrogels. When PEG-RGDS con-
centration was increased to 4.0 mg=cm2, some areas along the
stripes were covered by HUVECs. With 20 and 100mg=cm2 of
PEG-RGDS, HUVECs attached and covered all regions of 50-
mm-wide stripes. The progressive increase in HUVEC adhe-
sion was quantified by counting the number of attached cells
on hydrogels. As PEG-RGDS concentration was increased
from 2.0 to 100 mg=cm2, HUVEC adhesion correspondingly
increased as shown in Figure 2B.

Modulation of endothelial morphogenesis
by the PEG-RGDS concentration

In order to examine the effect of RGDS concentration on EC
cord formation, HUVECs were cultured on 50-mm-wide
stripes patterned with various concentrations of PEG-RGDS,
ranging from 2.0 to 100mg=cm2. At low concentration of PEG-
RGDS at 2.0 or 4.0 mg=cm2, there was minimal number of
HUVECs remaining attached to the substrates after 2 days in
culture as described above. On the other hand, HUVECs
cultured on stripes with intermediate PEG-RGDS concentra-
tion of 20mg=cm2 underwent morphogenesis and condensed
into highly organized, cord-like structures along the length of
the stripes (Fig. 3A). A vertical cross section of one such region
shows that HUVECs in the center began to protrude their
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nuclei and cell bodies vertically upward, and multiple cells
were stacked on top of each other (Fig. 3A). This phenomenon
resulted in the formation of 3D cord-like structures assembled
solely by HUVECs on 2D surface of PEGDA hydrogels. In
contrast, HUVECs cultured on stripes with higher PEG-RGDS
concentrations failed to undergo morphogenesis. On stripes
with 40 or 100 mg=cm2 of PEG-RGDS, HUVECs retained their
typical cobble stone–like morphology, and a vertical cross
section of one such region shows that the cells remained well

spread as monolayer close to the substrates (only 100mg=cm2

shown in Fig. 3B).

Modulation of endothelial morphogenesis
by the width of patterned stripes

In order to guide EC cord formation on the PEGDA hy-
drogels, the width of PEG-RGDS patterns were varied, and
their effects on cord formation were examined (Fig. 4).
HUVECs were seeded on stripes with width ranging from 50
to 200 mm. These stripes were prepared with 20mg=cm2 of
PEG-RGDS, which is the concentration found to support
EC morphogenesis as described above. After cell seeding,
HUVEC morphology was monitored up to 18 days. On 50-
mm-wide stripes, HUVECs formed highly organized contig-
uous cord-like structures in parallel orientation by 18 days in
culture (Fig. 4). On the other hand, most cells cultured on 75-,
100-, or 200-mm-wide stripes remained well spread up to 18
days in culture (only 200-mm-wide stripes shown in Fig. 4).

ECM protein expression during
HUVEC morphogenesis

Expression of ECM proteins during morphogenesis was
also investigated using immunofluorescence staining. After

FIG. 1. Surface patterning of PEGDA hydrogels. (A) Stripes
with 50- and 200-mm widths were laser printed on trans-
parency mask. (B) Fluorescence image of PEGDA hydrogel
surface patterned with FITC-conjugated PEG confirming
successful patterning. (C) HUVEC adhesion on a hydrogel
patterned with PEG-RGDS. Scale bars¼ 200 mm.

FIG. 2. The effects of PEG-RGDS concentration in micro-
patterns on HUVEC adhesion. (A) HUVECs attached on the
surface of PEGDA hydrogels patterned with various con-
centrations of PEG-RGDS in 50-mm-wide stripes. (B) Quan-
tification of cell adhesion by Coulter counter showed
increasing number of attached cells with increasing concen-
tration of PEG-RGDS on PEGDA hydrogels. Data represent
mean� SD (n¼ 5). *p< 0.05, analyzed by one-way ANOVA
followed by Tukey’s HSD test.
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14 days in culture, HUVECs in the process of cord formation
on RGDS stripes with 50-mm width were found to produce a
significant amount of fibronectin and laminin along the length
of cords, whereas deposition of collagen type I was below

the detection level (Fig. 5). The samples incubated with anti-
rabbit and anti-mouse secondary antibodies conjugated with
Alexa fluor 488 had minimal background fluorescence.

Discussion

In this study, a surface patterning technique was developed
to regulate the process of EC morphogenesis on synthetic
PEGDA hydrogels. Specifically, a photolithographic method
was employed to vary the density and geometry of PEG-
RGDS displayed on PEGDA hydrogels in order to modulate
EC angiogenesis. ECs cultured on RGDS stripes underwent
morphogenesis and formed rudimentary capillary-like struc-
tures depending on the width and density of the RGDS
patterns.

ECs grown on wide stripes remained in a normal, static
state, while restricting the geometries of the patterned area to
50mm seems to send angiogenic cues to ECs and stimulates
reorganization of the cell bodies into cord structures. Con-
centration of RGDS also modulated EC morphogenesis; en-
dothelial cord formation was stimulated on intermediate
concentration of RGDS (20 mg=cm2) sufficient to sustain cell
adhesion, whereas it was inhibited on higher concentration
of RGDS that supported firm cell adhesion. The cords formed
by ECs were reminiscent of capillaries with cells participating
in the self-assembly and reorganization into multicellular

FIG. 3. Visualization of EC morphogenesis on PEGDA hydrogels. (A) Confocal images showing HUVECs undergoing cord
formation on 50-mm-wide stripes with PEG-RGDS at 20 mg=cm2 after 2 days in culture. HUVECs coalesced into dense, cord-
like structures along the central axis of the stripe. (B) In contrast, HUVECs cultured on stripes with PEG-RGDS at 100mg=cm2

remained on monolayer. Cells stained with TRITC-phalloidin and DAPI are shown in red and blue, respectively. Scale
bars¼ 20mm.

FIG. 4. Cord formation by HUVECs seeded on PEGDA
hydrogels micropatterned with PEG-RGDS. EC morpho-
genesis is differentially regulated by the width of RGDS
stripes on PEGDA hydrogels. HUVECs formed cord-like
structures on 50-mm-wide stripes patterned with 20 mg=cm2

of PEG-RGDS, but not on 200-mm-wide stripes. Scale
bars¼ 100mm.
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structures. This work has demonstrated that a well-defined
substrate created by micropatterning can provide useful tools
to regulate capillary morphogenesis and to investigate the
progress of angiogenesis.

Only a handful of studies have reported regulation of EC
morphogenesis by micropatterned ECM substrates. Dike et al.

created stripes of fibronectin using microcontact printing on
gold surface.9 ECs cultured for 3 days on 10-mm-wide stripes
escaped the growth phase and underwent capillary mor-
phogenesis. However, ECs cultured on 30-mm-wide lines
continued to proliferate and maintained their normal mor-
phologies. In a more recent work, human microvascular ECs
cultured on 20-mm lines of micropatterned gelatin substrates
formed tubule-like structures.12 It was noteworthy in these
studies that the width of fibronectin or gelatin stripes required
for ECs to initiate tubulogenesis was 10–20 mm, whereas EC
morphogenesis was inhibited on wider stripes. In contrast, in
this current system employing RGDS, we observed endothe-
lial tube formation on PEG-RGDS stripes as wide as 50 mm,
but not on wider stripes. Multiple cell binding domains as
well as any growth factors bound on ECM proteins seem to
potentiate the angiogenic cues derived from the restriction of
ECM geometry in a synergistic manner, and this may explain
the different results obtained in this current study compared
to the aforementioned studies.

There have been several studies that examined the effect of
ligand concentration on angiogenesis. It is generally hypoth-
esized that the angiogenic cue is derived from changes in cell
shape that is regulated by the density of immobilized cell
adhesion ligand. EC morphogenesis is known to be promoted
on intermediate fibronectin coating densities (100–500 ng=
cm2), whereas highly adhesive (>500 ng=cm2) and nonadhe-
sive (<100 ng=cm2) coating densities promote cell growth and
apoptosis, respectively.7,23 It has been further shown that the
switch between growth or apoptosis of a single EC is regu-
lated by the degree to which the cell spreads on micro-
patterned surfaces.24 Deriving from these previous studies,
the current study aimed to find the optimal concentration of
cell adhesion ligand, RGDS, at which EC morphogenesis can
be promoted and guided in predesigned geometries. EC cord
formation was promoted at intermediate concentration of
RGDS as well as on narrow RGDS stripes; identification of
these two conditions will allow fabrication of scaffold mate-
rials with patterned endothelial blood vessel structures in
large scale.

ECM proteins are critical during angiogenesis. Collagen I
fibers have been suggested to provide a scaffold upon which
ECs align and form capillary structures,25 and its expression
in the capillaries appears to be coincident with angiogenesis
as ECs that do not express collagen I fail to form cords or tubes
in culture.26 In this regard, it is notable that ECs produced
fibronectin and laminin but not collagen I on micropatterns.
The discrepancy on expression of collagen type I during EC
morphogenesis warrants further studies as it is plausible that
fibronectin and laminin but not collagen I play essential roles
in the early phase of blood vessel formation.27

Work presented here examined the efficacy of PEGDA
hydrogels as a scaffold material to promote neovasculariza-
tion. The fact that ECs underwent cord formation on PEGDA
hydrogels demonstrates that PEGDA hydrogel is a suitable
biomaterial to orchestrate and recapitulate intricate process of
neovascularization. Absence of complex cellular interactions
with ECM proteins as well as precise control over the con-
stituents of the scaffold material makes PEGDA hydrogels a
versatile test bed for vascular biology and pharmacological
studies. In addition, identification of the hydrogels as an
amenable environment for blood vessel formation demon-

FIG. 5. Expression of ECM proteins during EC morphogen-
esis. After 14 days in culture, HUVECs produced (A) fibro-
nectin, (B) laminin, but not detectable amount of (C) collagen
type I on 50-mm-wide stripes of PEG-RGDS. Secondary anti-
body controls with (D) anti-rabbit IgG and (E) anti-mouse IgG
had minimal background signal. Scale bar¼ 200mm.
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strates that this material holds great potentials for various
applications in tissue engineering, where prevascularization
of tissue implants is critical.

In order to build scaffold materials that can be used in
clinical settings, the current study has to be extended to bio-
degradable PEG hydrogels that allow mammalian enzymes to
degrade the matrices for facile integration with host tissue.16,17

Also, the current system can be used to build scalable, 3D
structures by stacking multiple layers of hydrogels with
patterned blood vessels.20 The organization of cells in pre-
designed shapes and promotion of their morphogenesis
into blood vessel–like structures are an important first step
toward the fabrication of engineered tissues with complex
architecture.
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